Find the set of real roots of the equation$$\log_{(5x+4)}(2x+3)^3-\log_{(2x+3)}(10x^2+23x+12)=1$$
My Attempt $$ 2x+3>0, 5x+4>0, 2x+3,5x+4\neq1\implies x>-4/5\;\&\;x\neq -1\;\&\;x\neq -3/5 $$ $$ 3\log_{(5x+4)}(2x+3)-\log_{(2x+3)}(5x+4)(2x+3)=1\\ 3\log_{(5x+4)}(2x+3)-\log_{(2x+3)}(5x+4)-\log_{(2x+3)}(2x+3)=1\\ 3\log_{(5x+4)}(2x+3)-\log_{(2x+3)}(5x+4)-1=1\\ 3\log_{(5x+4)}(2x+3)-\log_{(2x+3)}(5x+4)=2\\ 3\log_{(5x+4)}(2x+3)-\frac{1}{\log_{(5x+4)}(2x+3)}=2 $$ Set $y=\log_{(5x+4)}(2x+3)$ $$ 3y^2-2y-1=0\implies y=\log_{(5x+4)}(2x+3)=1,\frac{-1}{3} $$ Case 1: $$ \log_{(5x+4)}(2x+3)=\frac{\log(5x+4)}{\log(2x+3)}=1\implies\log(5x+4)=\log(2x+3) \implies \boxed{x=\frac{-1}{3}} $$ Case 2: $$ \log_{(5x+4)}(2x+3)=\frac{\log(2x+3)}{\log(5x+4)}=\frac{-1}{3}\implies \color{red} ? $$ My reference says $x=\frac{-1}{3}$ is the only solution. How do I prove it ?
Possible Solution $$ y=\log_{(5x+4)}(2x+3)=\frac{-1}{3}<0\:,\quad x>-4/5=-0.8 $$ Case 1: $5x+4>1\implies x>-3/5=-0.6$ $$ 0<2x+3<1\implies -3/2<x<-1\implies-1.5<x<-1\\ \text{Not Possible !} $$ Case 2: $0<5x+4<1\implies -4/5<x<-3/5\implies-0.8<x<-0.6$ $$ 2x+3>1\implies x>-1\\ \implies \boxed{x\in(-0.8,-0.6)} $$ It seems like there could be a solution for "case 2" in my attempt ?
