We have, for $n\ge 6$,
$$\bigg(\frac n2\bigg)^n\gt n!\gt \bigg(\frac n3\bigg)^n\tag1$$
So, for $n=600$, we obtain
$$300^{600}\gt 600!\gt 200^{600}$$
To prove $(1)$, induction works.
For $n=6$, $(1)$ holds.
In the following, we use the fact that for $n\ge 2$, $$2\lt \bigg(1+\frac 1n\bigg)^n\lt 3$$
(We have $(1+\frac 1n)^n\gt \binom n0(\frac 1n)^0+\binom n1(\frac 1n)^1=2$, and see for example this proof for the inequality $(1+\frac 1n)^n\lt 3$.)
Suppose that $(1)$ holds for $n$.
Then, we have
$$\begin{align}&\bigg(\frac{n+1}{2}\bigg)^{n+1}-(n+1)!
\\\\&=\bigg(\frac{n+1}{2}\bigg)^{n+1}-(n+1)\times n!
\\\\&\gt \bigg(\frac{n+1}{2}\bigg)^{n+1}-(n+1)\times \bigg(\frac n2\bigg)^n
\\\\&=\frac{n+1}{2}\bigg(\frac n2\bigg)^n\bigg(\underbrace{\bigg(1+\frac 1n\bigg)^n-2}_{\text{positive}}\bigg)
\\\\&\gt 0\end{align}$$
and
$$\begin{align}&(n+1)!-\bigg(\frac{n+1}{3}\bigg)^{n+1}
\\\\&=(n+1)\times n!-\bigg(\frac{n+1}{3}\bigg)^{n+1}
\\\\&\gt (n+1)\times \bigg(\frac n3\bigg)^n-\bigg(\frac{n+1}{3}\bigg)^{n+1}
\\\\&=\frac{n+1}{3}\bigg(\frac n3\bigg)^n\bigg(\underbrace{3-\bigg(1+\frac 1n\bigg)^n}_{\text{positive}}\bigg)
\\\\&\gt 0.\ \blacksquare\end{align}$$
Only the last couple terms, i.e. $(300\cdot301),(299\cdot302),...,(284\cdot317)$, are greater than $300^2$ and the vast majority of terms in the product are less than $300^2$.$$\implies\underbrace{(1\cdot600)\cdot(2\cdot599)\cdot(3.598)\cdot\cdot\cdot(300\cdot301)}_{300\text{ terms}}\le(300^2)^{300}$$
– Shubham Johri Apr 06 '19 at 12:08