Given a fixed odd integer $y\in\mathbb{Z}$ and a natural number $n\in\mathbb{N}$, can we compute the cardinality of the set $\{(m,k)\in\mathbb{N}^2:k\leq n, 2^m-3^k=y\}$ explicitly?
Thanks in advance for any help.
Given a fixed odd integer $y\in\mathbb{Z}$ and a natural number $n\in\mathbb{N}$, can we compute the cardinality of the set $\{(m,k)\in\mathbb{N}^2:k\leq n, 2^m-3^k=y\}$ explicitly?
Thanks in advance for any help.