Denote by $a$ the side of the triangle. Since the areas of the triangle and the square are the same, we have $\frac{a^2\sqrt 3}{4}=1$, so $a=\frac{2}{\sqrt[4]3}$.
Set the coordinate system as follows: $A=(0,0)$, $C=(a,0)$ and $B=(\frac{a}{2},\frac{a\sqrt 3}{2})$. Then $D=\frac{A+B}{2}=(\frac{a}{4},\frac{a\sqrt 3}{4})$ and $E=\frac{C+B}{2}=(\frac{3a}{4},\frac{a\sqrt 3}{4})$. Further, by projecting $D$ and $E$, $F=(\frac{a}{4},0)$ and $G=(\frac{3a}{4},0)$.
We have $\vec{FE}=(\frac{a}{2},\frac{a\sqrt 3}{4})$, and $I=F+\alpha\vec{FE}=(\frac{a}{4}+\alpha\frac{a}{2},\alpha\frac{a\sqrt 3}{4})$ for some $\alpha$. Then $\vec{GI}= (\alpha\frac{a}{2}-\frac{a}{2},\alpha\frac{a\sqrt 3}{4})$. Since $FE\perp GI$ we have $\vec{FE}\cdot\vec{GI}=0$, so $\frac{a}{2}(\alpha\frac{a}{2}-\frac{a}{2})+ \frac{a\sqrt 3}{4}\alpha\frac{a\sqrt 3}{4}=0$, i.e. $\alpha-1+\frac{3}{4}\alpha=0$, where from $\alpha=\frac{4}{7}$.
So $\vec{GI}=(\frac{2a}{7}-\frac{a}{2},\frac{a\sqrt 3}{7})$. Therefore $GI^2=(\frac{2a}{7}-\frac{a}{2})^2+(\frac{a\sqrt 3}{7})^2= \frac{4a^2}{49}-\frac{2a^2}{7}+\frac{a^2}{4}+\frac{3a^2}{49}= \frac{a^2}{4}-\frac{a^2}{7}=\frac{3a^2}{28}$. Thus $GI=a\frac{\sqrt 3}{2\sqrt 7}= \frac{\sqrt[4]{3}}{\sqrt 7}$, and this is not $\frac{1}{2}$.
Edit. After Aretino posted his solution, which is correct, I started to wonder where is the mistake in mine. And there is no mistake. Mistake is in Version 2 of the construction. Namely, the rectangle obtained by Version 2 is not a square.