I want to prove the following:
$A \subset B$ be integral and flat extension of rings then it is faithfully flat.
Clearly enough to show that for every ideal $I$ of $A$, $I^{ec}=I$. Since the extension is integral for every prime ideal $p$ of $A$ $p^{ec}=p$. I can’t show that it also holds for arbitrary ideal. I need some help. Thanks.