I once thought that this equation $x^3+y^3+z^3=6$ has only a few smaller integer solutions. Until somebody told me this $6=192722201207819^3+162765491944499^3+(-225522344776678)^3$ existed. I don't know how it came about.
Question: How to find more integer solutions to the equation $a^3+b^3+c^3={\color{red}{6}}$?
a few smaller integer solutions: \begin{align*} (-637)^3+(-205)^3+644^3&=6\\ (-235)^3+(-55)^3+236^3&=6\\ (-58)^3+(-43)^3+65^3&=6\\ (-1)^3+(-1)^3+2^3&=6\\ \end{align*}
Something happened recently
I've also heard that mathematicians have recently solved this problem:
The least integer solutions to the equation $a^3+b^3+ c^3=33$