A Parametrization of the 3-Ellipse
Let $$x^2+y^2+z^2=\rho$$ and $$Q_k\equiv (u-u_k)^2+(v-v_k)^2$$ where $u,v$ are our plane variables; then we wish to parametrize $$\sqrt{Q_1}+\sqrt{Q_2}+\sqrt{Q_3}=\rho.$$ Let $$\sqrt{Q_1}=x^2\\ \sqrt{Q_2}=y^2,\\ \sqrt{Q_3}=z^2.$$
Then
$$u^2+v^2-2u_1u-2v_1v+u_1^2+v_1^2=x^4\\u^2+v^2-2u_2u-2v_2v+u_2^2+v_2^2=y^4\\u^2+v^2-2u_3u-2v_3v+u_3^2+v_3^2=z^4.$$
Subtract (2) from (1) and (3) from (2) and (1) from (3) to obtain
$$2(u_2-u_1)u+2(v_2-v_1)v+u_1^2+v_1^2-u_2^2-v_2^2=x^4-y^4,\\2(u_3-u_2)u+2(v_3-v_2)v+u_2^2+v_2^2-u_3^2-v_3^2=y^4-z^4,\\2(u_1-u_3)u+2(v_1-v_3)v+u_3^2+v_3^2-u_1^2-v_1^2=z^4-x^4.$$ From here we relabel $$U_1u+V_1v+W_1=x^4-y^4,\\U_2u+V_2v+W_2=y^4-z^4,\\U_3u+V_3v+W_3=z^4-x^4,$$ and we know that $$\begin{vmatrix}U_1&V_1&-W_1+x^4-y^4\\U_2&V_2&-W_2+y^4-z^4\\U_3&V_3&-W_3+z^4-x^4\end{vmatrix}=0$$
$$\begin{vmatrix}U_1&V_1&x^4-y^4\\U_2&V_2&y^4-z^4\\U_3&V_3&z^4-x^4\end{vmatrix}=\begin{vmatrix}U_1&V_1&W_1\\U_2&V_2&W_2\\U_3&V_3&W_3\end{vmatrix}$$
$$[U_2V_3]^-(x^4-y^4)-[U_1V_3]^-(y^4-z^4)+[U_1V_2]^{-}(z^4-x^4)=[U_1V_2W_3]^-$$
$$\frac{[U_2V_3]^--[U_1V_2]^{-}}{[U_1V_2W_3]^-}x^4-\frac{[U_1V_3]^-+[U_2V_3]^-}{[U_1V_2W_3]^-}y^4+\frac{[U_1V_2]^{-}+[U_1V_3]^-}{[U_1V_2W_3]^-}z^4=1.$$ Let's now parameterize $(x,y,z)$ using $$(x,y,z) = \sqrt{\rho}(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$$ and therefore our second equation restricts one parameter (we'll choose $\theta$):
$$\Delta_x(\sin\theta\cos\phi)^4+\Delta_y(\sin\theta\sin\phi)^4+\Delta_z(\cos\theta)^4=\frac{1}{\rho^2}$$
$$\left[\Delta_x(\cos\phi)^4+\Delta_y(\sin\phi)^4\right]\left(1-(\cos\theta)^2\right)^2+\Delta_z(\cos\theta)^4=\frac{1}{\rho^2}$$
and since the root $x$ of
$$a(1-x)^2+bx^2=c$$ is $$x_{\pm}=\frac{a\pm\sqrt{(a+b)c-ab}}{a+b}$$ we have $$\cos\theta=\sqrt{\frac{\rho(\cos\phi)^2(\Delta_x+\Delta_y(\tan\phi)^4)+\sqrt{(\Delta_x+\Delta_y(\tan\phi)^4+\Delta_z(\sec\phi)^4)-\rho^2(\Delta_x+\Delta_y(\tan\phi)^4)\Delta_z}}{\rho(\cos\phi)^2(\Delta_x+\Delta_y(\tan\phi)^4+\Delta_z(\sec\phi)^4)}}$$ for which $z=\sqrt{\rho}\cos\theta,$ and from that we can derive $\sin\theta=\sqrt{1-\cos^2\theta}.$ Thus our $u,v$ can be obtained from
$$U_1u+V_1v+W_1=x^4-y^4,\\U_2u+V_2v+W_2=y^4-z^4.$$
$$\begin{bmatrix}U_1&V_1\\U_2&V_2\end{bmatrix}\begin{bmatrix}u\\ v\end{bmatrix}=\begin{bmatrix}x^2-y^2-W_1\\ y^2-z^2-W_2\end{bmatrix}$$ or $$\begin{bmatrix}u\\ v\end{bmatrix}=\frac{1}{[U_1V_2]^-}\begin{bmatrix}V_2&-V_1\\-U_2&U_1\end{bmatrix}\begin{bmatrix}x^4-y^4-W_1\\ y^4-z^4-W_2\end{bmatrix}$$ and $(u,v)$ our parametrization is finally given by $$\boxed{\boxed{\left(\frac{V_2x^4-(V_1+V_2)y^4+V_1z^4+[V_1W_2]^-}{[U_1V_2]^-},\frac{-U_2x^4+(U_1+U_2)y^4-U_1z^4+[W_1U_2]^-}{[U_1V_2]^-}\right).}}$$
Trying to do it more directly in a previous attempt:
This is an attempt at the 3-ellipse:
Let's give it a try. Let $$Q_k=(x-x_k)^2+(y-y_k)^2$$
so that $$\sqrt{Q_1}+\sqrt{Q_2}+\sqrt{Q_3}=\rho.$$
Now let $$\sqrt{Q_3}=\rho \cos^2 \alpha\\
\sqrt{Q_1}+\sqrt{Q_2}=\rho\sin^2\alpha $$ so that
$$Q_3=\rho^2\cos^4\alpha \\
4Q_1Q_2=\left(\rho^2\sin^4\alpha-Q_1-Q_2\right)^2.$$ For simplicity
let $(x_3,y_3)=(0,0),$ and $(x_2,y_2)=(1,0)$ so
$$x^2+y^2=\rho^2\cos^4\alpha\equiv g,\\ x^2=g-y^2,\\
\rho^2\sin^4\alpha=(\rho-\sqrt{g})^2\equiv G.$$ Then
$$4((x-1)^2+y^2)((x-x_1)^2+(y-y_1)^2)=\left(\rho^2\sin^4\alpha-Q_1-Q_2\right)^2$$
$$4(g-2x+1)(g-2xx_1+x^2_1-2yy_1+y^2_1)=\left(G-(g-2x+1)-(g-2xx_1+x^2_1-2yy_1+y^2_1)\right)^2;$$ let $x_1^2+y_1^2=Z$ and collecting like terms in $x,y$ we obtain
$$16x_1x^2+16y_1xy-8((1+g)x_1+Z+g)x-8(1+g)y_1y+4(Z+g)(g+1)=\left(G-2g-Z-1+2(1+x_1)x+2y_1y\right)^2$$
which we can relabel as $$ax^2+bxy+cx+dy+e=(u+vx+wy)^2\\
ag+e+dy-ay^2+(c+by)\sqrt{g-y^2}=\left(u+v\sqrt{g-y^2}+wy\right)^2$$ or
$$ag+e+dy-ay^2+(c+by)\sqrt{g-y^2}=u^2+v^2g+2uwy+(w^2-v)y^2+2(uv+vwy)\sqrt{g-y^2}$$
$$0=u^2+(v^2-a)g-e+(2uw-d)y+(w^2-v+a)y^2+2(uv-c+(vw-b)y)\sqrt{g-y^2}$$
which can be rephrased as
$$0=A+By+Cy^2+2(D+Ey)\sqrt{g-y^2}$$
$$(A+By+Cy^2)^2-4(D+Ey)^2(g-y^2)=0$$
$$A^2+B^2y^2+C^2y^4+2y(AB+CAy+BCy^2)-4(D+Ey)^2(g-y^2)=0$$
$$A^2+2ABy+(B^2+CA)y^2+2BCy^3+C^2y^4-4(D+Ey)^2(g-y^2)=0$$
$$A^2+2ABy+(B^2+CA)y^2+2BCy^3+C^2y^4+(-4gD^2-8gDEy+4(D^2-gE^2)y^2+8DEy^3+4E^2y^4)=0$$ $$A^2-4gD^2+2(AB-4gDE)y+(B^2+CA+4(D^2-gE^2))y^2\\+2(BC+4DE)y^3+(C^2+4E^2)y^4=0$$
which can again be rephrased as
$$P+Qy+Ry^2+Sy^3+Ty^4=0$$
I'm probably not going to go into detail trying to find out if, for
example, $Q,S=0$, or if $T=0$, or if under some transformation I can
make enough terms vanish: for now, it's sufficient know that the
problem of parametrizing this octic (deg 8) curve needs only the
solution to a quartic, and not a septic.
$$\begin{matrix}\text{Coefficient}&\text{Definition}\\ \\
P&A^2-4gD^2\\ Q&2(AB-4gDE)\\ R&B^2+CA+4(D^2-gE^2)\\ S&2(BC+4DE)\\
T&C^2+4E^2\\ \\ A&u^2+(v^2-a)g-e\\ B&2uw-d\\ C&w^2-v+a\\ D&uv-c\\
E&vw-b \\ \\ a&16x_1 \\ b&16y_1\\ c&-8(Z+g+(1+g)x_1)\\ d&-8(1+g)y_1\\
e&4(Z+g)(g+1)\\ \\ u&G-2g-Z-1\\v&2(1+x_1)\\ w&2y_1\\ \\
Z&x_1^2+y_1^2\\G&(\rho-\sqrt{g})^2\\g&
\rho^2\cos^4\alpha\end{matrix}$$
If I would do it over again, I'd wager the substitution
$X=x^2+y^2,Y=x^2-y^2.$