Exercise 2.14 in Wainwright, "High-Dimensional Statistics", states that if $X$ is such that $$P[|X-\mathbb{E}[X]|\geq t] \leq c_1 e^{-c_2t^2},$$ for $c_1, c_2$ positive constants, $t\geq 0$, then for any median $m_X$ it holds that $$P[|X-m_X|\geq t] \leq c_3 e^{-c_4t^2},$$ with $c_3=4c_1$ and $c_4=c_2/8$.
I can get some loose concentration around the median using $|\mathbb{E}[X]-m_X|\leq \sqrt{\mathbb{V}[X]}$, but this does not achieve the constants proposed. Any ideas for how to get the suggested bound, or any other bound resembling it?