In Combinatorial proof of summation of $\sum\limits_{k = 0}^n {n \choose k}^2= {2n \choose n}$, the product
$\left(\sum_{a=0}^n\binom{n}{a}x^a\right)\left(\sum_{b=0}^n\binom{n}{b}x^{n-b}\right)=\sum_{c=0}^{2n}\left(\sum_{a+n-b=c}\binom{n}{a}\binom{n}{b}\right)x^c$
This approach uses a "generating function" and collects all the coefficients of $x^{c}$ for fixed $c$ into $\sum_{a+n-b=c}\binom{n}{a}\binom{n}{b}$, to get $\sum_{c=0}^{2n}\left(\sum_{a+n-b=c}\binom{n}{a}\binom{n}{b}\right)x^c$
I know that $\left(\sum_{a=0}^n\binom{n}{a}x^a\right)\left(\sum_{b=0}^n\binom{n}{b}x^{n-b}\right)= \sum_{a=0}^{n}\sum_{b=0}^{n}\binom{n}{a}\binom{n}{b}x^{a+n-b}$, but it remains unclear how one can obtain $\sum_{c=0}^{2n}\left(\sum_{a+n-b=c}\binom{n}{a}\binom{n}{b}\right)x^c$ from the initial product.