Starting with
$$ \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} +...$$
$$= \left(1 + \frac{1}{2^s} + \frac{1}{2^{2s}} +...\right)\left(1 + \frac{1}{3^s} + \frac{1}{3^{2s}} +...\right)\left(1 + \frac{1}{5^s} + \frac{1}{5^{2s}} +...\right) + ...$$
$$=\left( \frac{1}{1-\frac{1}{2^s}}\right)\left( \frac{1}{1-\frac{1}{3^s}}\right)\left( \frac{1}{1-\frac{1}{5^s}}\right)...$$
Taking logarithm,
$$ \log (\zeta(s)) = - \sum_p \log(1 - \frac{1}{p^s}) $$
Differentiating both sides,
$$ \frac{\zeta^\prime (s)}{\zeta(s)} = - \sum_p \frac{-\frac{\log p}{p^s}}{\left(1 - \frac{1}{p^s} \right)} = - \sum_p \frac{\log p}{\left(1 - p^s\right)}$$
and so
$$ \frac{\zeta^\prime (s)}{\zeta(s)} \stackrel{?}{=} -\frac{\log 2}{2^s} - \frac{\log 3}{3^s} - \frac{\log 2}{4^{s}} - \frac{\log 5}{5^s} - \frac{\log 7}{7^s} - \frac{\log 2}{8^{s}} - \frac{\log 3}{9^{s}} - \frac{\log 11}{11^s}-...$$
$$= \sum_{p^k} \frac{\log p}{p^{ks}}$$
Multiplying both sides by $\frac{x^s}{s}$ and integrating w.r.t. s,
$$ \oint \frac{\zeta^\prime (s)}{\zeta(s)}\left(\frac{x^s}{s}\right)ds = -\oint \sum_{p^k} \left(\frac{\log p}{s} \right) \left(\frac{x}{p^k}\right)^s ds $$
$$= -\sum_{p^k}\log p \left(\oint \left(\frac{x}{p^k}\right)^s \left(\frac{1}{s} \right) ds \right)$$
$$ = -2\pi i \sum_{p^k}\log p $$
by the complex residue theorem at $s=0$.
Hence
$$ \sum_{p^k}\log p = -\frac{1}{2\pi i} \oint \frac{\zeta^\prime (s)}{\zeta(s)}\left(\frac{x^s}{s}\right)ds$$
The singularities of the RHS occur:
at $s=0$ with residue
$$\frac{\zeta^\prime (0)}{\zeta(0)}x^0=\frac{-\frac{1}{2}\log(2\pi)}{-\frac{1}{2}}(1) = \log(2\pi)$$
at $s=1$ with residue
$$ -\frac{x^1}{1} \stackrel{?}{=} - x $$
at $s=-2, -4, -6, ...$ with residue
$$ \frac{1}{2x^2} + \left(\frac{1}{2x^2}\right)^2 + + \left(\frac{1}{2x^2}\right)^3 + ... = \frac{1}{2} \log \left(1 - \frac{1}{x^2}\right)$$
at all other zero locations $\alpha$ with residue
$$\sum_\alpha \frac{x^\alpha}{\alpha}$$
Therefore,
$$\boxed{\sum_{p^k \le x} \log(p) = x - \log(2\pi) - \frac{1}{2} \log \left(1 - \frac{1}{x^2}\right) - \sum_\alpha \frac{x^\alpha}{\alpha}}$$
i.e. the von Mangoldt formula for $\psi(x) = \sum_{p^k \le x} \log(p)$ does not assume that $Re(\alpha) = \frac{1}{2}$ (Riemann hypothesis).
In order to connect the zeros of $\zeta(s)$ with the prime counting function $\pi(x) = \sum_{p<x} 1$, consider the quantity
$$ \sum_{p^k\le x} \frac{1}{k} = \sum_{p \le x} \left( 1 + \frac{1}{2} + ... + \frac{1}{\lfloor \frac{\log x}{\log p}\rfloor} \right)$$
$$ = \sum_{p \le x} \left( \lfloor \frac{\log x}{\log p}\rfloor + 0.57721 \right)$$
where $0.57721$ is the Euler-Mascheroni constant.
Then
$$ \boxed{\left(\log x \sum_{p \le x} \frac{1}{\log p} -0.42279 \sum_{p \le x} 1 \right) \le \sum_{p^k\le x} \frac{1}{k} \le \left(\log x \sum_{p \le x} \frac{1}{\log p} + 0.57721 \sum_{p \le x} 1 \right)}$$
On the other hand,
$$ \sum_{p^k\le x} \frac{1}{k} = \sum_{p^k\le x} \frac{\log p}{k \log p} = \sum_{p^k\le x} \frac{\log p}{\log p^k} $$
which bounds
$$ \boxed{\left( \sum_{p^k\le x} \log p \right) \le \sum_{p^k\le x} \frac{1}{k} \le \left( \frac{1}{\log x} \sum_{p^k\le x} \log p \right)}$$
implying that
$$\sum_{p^k\le x} \log p \le \log x \sum_{p \le x} \frac{1}{\log p} + 0.57721 \sum_{p \le x} 1 $$
and
$$ \log x \sum_{p \le x} \frac{1}{\log p} -0.42279 \sum_{p \le x} 1 \le \frac{1}{\log x} \sum_{p^k\le x} \log p $$
Hence the two bounds
$$\boxed{x - \log(2\pi) - \frac{1}{2} \log \left(1 - \frac{1}{x^2}\right) - \sum_\alpha \frac{x^\alpha}{\alpha} \le \log x \sum_{p \le x} \frac{1}{\log p} + 0.57721 \sum_{p \le x} 1 }$$
and
$$\boxed{\log x \sum_{p \le x} \frac{1}{\log p} -0.42279 \sum_{p \le x} 1 \le \frac{1}{\log x} \left( x - \log(2\pi) - \frac{1}{2} \log \left(1 - \frac{1}{x^2}\right) - \sum_\alpha \frac{x^\alpha}{\alpha} \right) }$$
connect the prime counting function $\pi(x)$ to the zeros of $\zeta(s)$.