For fun, I tried to prove the well-known exponential property $e^{a+b} = e^a e^b$ using the limit definition of the exponential function, below.
Definition. The exponential function is defined as follows.
$$e^x := \lim_{\epsilon \rightarrow 0} \left( 1 + \epsilon x \right)^{1/\epsilon}$$
I was able to outline the majority of the proof, however I do not have sufficient justification to go from line $\eqref 1$ to step $\eqref 2$. What limit properties might be used to fill in the blanks? I'd prefer not to use the binomial theorem or calculus-based argument, if possible (though if an expansion like that seems necessary, that is OK!).
Proof.
$$e^{a+b} = \lim_{\epsilon \rightarrow 0} \left( 1 + \epsilon (a+b) \right)^{1/\epsilon}$$
$$e^{a+b} = \lim_{\epsilon \rightarrow 0} \left( 1 + \epsilon a + \epsilon b \right)^{1/\epsilon} \tag 1 \label 1$$
$$\vdots$$
$$e^{a+b} = \lim_{\epsilon \rightarrow 0} \left( 1 + \epsilon a + \epsilon b + \epsilon^2 ab\right)^{1/\epsilon} \tag 2 \label 2$$
$$e^{a+b} = \lim_{\epsilon \rightarrow 0} \left( (1 + \epsilon a)(1 + \epsilon b)\right)^{1/\epsilon}$$
$$e^{a+b} = \lim_{\epsilon \rightarrow 0} \left(1 + \epsilon a \right)^{1/\epsilon} \left(1 + \epsilon b\right)^{1/\epsilon}$$
$$e^{a+b} = e^a e^b$$