Show that $$\left| \oint_{|z| = R} \frac{\log z}{z^2}\,dz \right| \leq 2 \sqrt{2} \pi \frac{\log R}{R}, \quad R > e^\pi$$
I tried solving it, but I’m not sure if my methods are correct.
First, let $z =Re^{i \theta},\: 0 \leq \theta \leq 2 \pi$ and $R > e^\pi \Rightarrow dz = iRe^{i \theta} d \theta$.
\begin{align} \Biggl| \oint_{|z| = R} \frac{\log z}{z^2} dz\, \Biggr| &= \Biggl| \int_0^{2\pi} \frac{\log Re^{i \theta}}{(Re^{i\theta})^2} iRe^{i \theta} d\theta \,\Biggr| = \Biggl| \int_0^{2\pi} \frac{\log R + \log e^{i \theta}}{Re^{i\theta}} d\theta\, \Biggr| \\ &\leq \Biggl| \int_0^{2\pi} \frac{\log R + e^{i\theta} e^{i\theta}}{Re^{i \theta}} d\theta\,\Biggr| \leq\Biggl| \int_0^{2\pi} \frac{\log R \ e^{i\theta}}{R} d\theta \,\Biggr| \leq \Biggl|\int_0^{2\pi} \frac{\log R(1)}{R} d\theta \,\Biggr| \\ &= \frac{\log R}{R} \theta \biggm|_0^{2\pi} = \frac{\log R}{R}(2\pi) \leq 2 \sqrt{2} \pi \frac{\log R}{R} \end{align} Thanks in advance.