0

I can't figure out how to mathematically solve $\lim_{x \to -\infty} (x +\sqrt{x^2+2x})$.

According to Desmos, this limit equals $-1$, and this answer was accepted by the software I'm using.

I have tried:

$$\lim_{x \to -\infty} (x +\sqrt{x^2+2x})$$

$$=\lim_{x \to -\infty} (x +\sqrt{x^2+2x}) \cdot \frac{x -\sqrt{x^2+2x}}{x -\sqrt{x^2+2x}}$$

$$=\lim_{x \to -\infty} \frac{-2x}{x - \sqrt{x^2+2x}}$$

$$=\lim_{x \to -\infty} \frac{-2x}{x - x(\sqrt{1+\frac{2}{x}})}$$

But this doesn't seem to point to $-1$ being the limit.

4 Answers4

5

The problem happens when you factor $x$ out of the square root. Recall that $$\sqrt{x^2} = |x|,$$ so since $x \to -\infty$, we have $\sqrt{x^2} = -x$. Your last line should therefore be $$=\lim_{x \to -\infty} \frac{-2x}{x + x\sqrt{1+\frac{2}{x}}},$$ which you can see will approach $-1$.

Théophile
  • 24,749
2

$$\lim_{x\to-\infty} (x+\sqrt{x^2+2x})=\lim_{x\to\infty} (\sqrt{x^2-2x}-x)$$ $$=\lim_{x\to\infty} (x\sqrt{1-\frac{2}{x}}-x)$$ $$=\lim_{x\to\infty} (x(1-\frac{1}{x}+o(\frac{1}{x^2}))-x)$$ $$=\lim_{x\to\infty} (x-1+o(\frac{1}{x})-x)$$ $$=-1$$

Peter Foreman
  • 20,095
1

$\lim_{x \rightarrow - \infty} (x + \sqrt{x^2 + 2x})$

$=\lim_{x \rightarrow - \infty} (\frac{-2x}{x - \sqrt{x^2 + 2x}})$

$=\lim_{x \rightarrow - \infty} (\frac{-2}{1 - \sqrt{x^2 + 2x}/x})$

Now use $x = -\sqrt{x^2}$ when $x < 0$ to get:

$=\lim_{x \rightarrow - \infty} (\frac{-2}{1 + {\sqrt{1 + 2/x}}}) = -1$

0

it is $$\frac{-2x}{x+x\sqrt{1+\frac{2}{x}}}$$ and this tends to $-1$ for $x$ tends to $-\infty$