Feller obtains in his book An Introduction to Probability Theory. Vol II (p.342) the following result (... unfortunately he does not give a detailed proof):
Let $(B_t^x)_{t \geq 0}$ be a Brownian motion started at $x \in \mathbb{R}^d$ (i.e. $B_t^x = x+B_t$ where $(B_t)_{t \geq 0}$ is a standard Brownian motion). For fixed $a>0$ define a stopping time $\tau^{x}_a$ by $$\tau^x_a := \inf\{t>0; B_t^x \notin (0,a)\}.$$ Then it holds for any $x \in [0,a]$ and $t \geq 0$ that $$\mathbb{P}(\tau^x_a > t) = \frac{4}{\pi} \sum_{n \geq 0} \frac{1}{2n+1} \exp \left( - \frac{(2n+1)^2 \pi^2}{2a^2} t \right) \sin \frac{(2n+1) \pi x}{a}. \tag{1}$$
Now let $(B_t)_{t \geq 0}$ be a standard Brownian motion and set $$M_t^* := \sup_{s \leq t} |B_s|.$$ Then $$\{M_t^* < r\} = \left\{ \sup_{s \leq t} |B_s| < r \right\} \stackrel{B_s^x=x+B_s}{=} \left\{ \sup_{s \leq t} |B_s^r| < 2r \right\} = \{\tau_{2r}^r >t\}$$ for any $r>0$, and so, by (1),
\begin{align*} \mathbb{P}(M_t^* < r) &= \frac{4}{\pi} \sum_{n \geq 0} \frac{1}{2n+1} \exp \left( - \frac{(2n+1)^2 \pi^2}{8r^2} t \right) \sin \frac{(2n+1) \pi}{2} \\ &= \frac{4}{\pi} \sum_{n \geq 0} (-1)^n \frac{1}{2n+1} \exp \left( - \frac{(2n+1)^2 \pi^2}{8r^2} t \right). \end{align*}