Question. $p$ is a prime, $k$ is a given natural number. If $a, b, c, d$ exists s.t. $p=a^2+kb^2$, $pn=c^2+kd^2$, proof that integer $x, y$ such that $n=x^2+ky^2$ exists.
My approach. Let $n=x^2+ky^2$.
$pn=(a^2+kb^2)(x^2+ky^2)=(ax \pm kby)^2+k(ay \mp bx)^2$.
Let $(x_1, y_1)$ the root of $ax+kby=c, -bx+ay=d$.
Let $(x_2, y_2)$ the root of $ax-kby=c, bx+ay=d$.
If one of $(x_1, y_1)$ or $(x_2, y_2)$ is integer pair, the proof will be done.
$$x_1=\frac{ac-kbd}{p}, y_1=\frac{ad+bc}{p}$$ $$x_2=\frac{ac+kbd}{p}, y_2=\frac{ad-bc}{p}$$
So when we proof these three,
- $p \mid (ad+bc)(ad-bc)$
- $p \mid ad+bc \Rightarrow p \mid ac-kbd$
- $p \mid ad-bc \Rightarrow p \mid ac+kbd$
The proof will be done.
How should I prove this?