Let $\{x_1,\dots,x_n\}$ be a finite orthonormal set in a Hilbert Space $H$. Prove that for any $x\in H$ the vector $$x-\sum_{k=1}^n \langle x,x_k\rangle x_k$$ is orthogonal to $x_k$ for every $k=1,\dots,n$.
Since $\{ x_1,\dots,x_n\}$ is an orthonormal set, we know that $\langle x_i,x_j\rangle = 0$ for $i\neq j$. We will show that $\langle x-\sum_{k=1}^n \langle x,x_k\rangle x_k , x_k \rangle = 0$ for all $k=1,\dots,n$. Then,
\begin{align} \langle x-\sum_{k=1}^n \langle x,x_k\rangle x_k , x_k \rangle &= \langle x,x_k\rangle -\langle \sum_{k=1}^n \langle x,x_k\rangle x_k , x_k\rangle \\ &= \langle x,x_k\rangle - \langle \langle x,x_k\rangle x_k, x_k \rangle \\ &= \langle x, x_k \rangle - \langle x,x_k\rangle \langle x_k,x_k\rangle \\ &= \langle x,x_k\rangle - \langle x,x_k\rangle \| x_k\| \end{align} So I messed up somewhere. Any help would be appreciated.