Suppose $f:\mathbb{R} \rightarrow \mathbb{R}$ is continuous on $[0,\infty)$ and $\lim\limits_{x \rightarrow \infty} (f(x) +\int^x_0 f(t) dt)$ exists. Show that $\lim\limits_{x \to \infty} f(x) = 0$.
Any hints to get me started would be appreciated.
Suppose $f:\mathbb{R} \rightarrow \mathbb{R}$ is continuous on $[0,\infty)$ and $\lim\limits_{x \rightarrow \infty} (f(x) +\int^x_0 f(t) dt)$ exists. Show that $\lim\limits_{x \to \infty} f(x) = 0$.
Any hints to get me started would be appreciated.
Let $F(x)=\int_0^{x} f(t) \, dt$ then the assumption is
$$\lim\limits_{x \rightarrow \infty} (F'(x) +F(x))=L.$$
Now, by If $\lim\limits_{x\rightarrow\infty} (f'(x)+f(x)) =L<\infty$, does $\lim\limits_{x\rightarrow\infty} f(x) $ exist? ,
we have that $$\lim\limits_{x \rightarrow \infty} F(x)=L.$$ and it follows straightforwardly that
$$\lim\limits_{x \rightarrow \infty} f(x)=\lim\limits_{x \rightarrow \infty} F'(x)=\lim\limits_{x \rightarrow \infty} \left((F'(x)+F(x))-F(x)\right)=L-L=0.$$