1) As indicated by the OP, you can easily verify that
$$\frac{\partial \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)}{\partial \textbf{X}} = \textbf{X}\textbf{P}^T+\textbf{X}\textbf{P}$$
as
$$ \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T) = \sum_{pqr}X_{pq}P_{qr}X_{rp}$$
$$\bbox[5px,border:2px solid #000000]{\frac{\partial \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)}{\partial X_{ij}} = \sum_{q}X_{jq}P_{qi} + \sum_{r}P_{jr}X_{ri} = (\textbf{X}\textbf{P}^T)_{ij}+(\textbf{X}\textbf{P})_{ij}
} \qquad\Box$$
In most common cases, a matrix $\textbf A$ has no special structure. That is to say, all elements of a matrix $\textbf A$ are independent of each other (e.g. not symmetric, Toeplitz, positive definite, diagonal). This means that
$$ \frac{\partial A_{pq}}{\partial A_{rs}} = \delta_{pr}\delta_{qs}\quad\textrm{or}\qquad \frac{\partial\textbf{A}}{\partial A_{pq}} = \textbf{J}^{pq},$$
where $\textbf{J}^{pq}$ is a matrix with all zeros except element $(p,q)$ is 1 and thus we can write:
$$\textbf A=\sum_{pq=1}^n A_{pq}\textbf J^{pq}$$
Generally, if a structure is imposed we can decompose it by means of a set of linear independent structure matrices $\textbf S_i$ such that
$$\textbf A=\sum_{i=1}^n a_i\textbf S_i\qquad\textrm{and}\qquad\frac{\partial\textbf{A}}{\partial a_p} = \textbf{S}_p$$
As indicated by the OP, we know that $\textbf{X} = \textbf{B}\textbf{A}=\sum_i a_i \textbf{B}\textbf{S}_i$
Then the derivative of $\textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)$ to $a_i$ is now straightforward using the chain rule:
$$\frac{\partial \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)}{\partial a_i} = \sum_{pq}\frac{\partial \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)}{\partial X_{pq}}\cdot\frac{\partial X_{pq}}{\partial a_i} = \textrm{Tr}\,\left(\frac{\partial \textrm{Tr}\,(\textbf{X} \textbf{P} \textbf{X}^T)}{\partial \textbf{X}}\cdot\frac{\partial \textbf{X}^T}{\partial a_i} \right)$$
with
$$ \frac{\partial X_{pq}}{\partial a_i} = \sum_{r} B_{pr} S_{i;rq}\qquad\textrm{or}\qquad \frac{\partial \textbf{X}}{\partial a_i} = \textbf{B}\textbf{S}_i$$
So finally we can write down:
$$\bbox[5px,border:2px solid #00A000]{\frac{\partial \textrm{Tr}\,(\textbf{BAP}\textbf{A}^T\textbf{B}^T)}{\partial a_i} = \textrm{Tr}\,\left\{
\left(\textbf{BA}\textbf{P}^T+\textbf{BA}\textbf{P}\right)
\cdot \left(\textbf{B}\textbf{S}_i\right)^T \right\} = \textrm{Tr}\,\left\{\textbf{B}^T\textbf{BA}\left(\textbf{P}^T+\textbf{P}\right)\textbf{S}_i^T\right\}}$$
So far we did not impose any structure on $\textbf A$, but since it is diagonal we can say that $S_{i;pq}=\delta_{pq}\delta_{pi}$.