2

I need help with this problem:

Show that If $f(x)=\sum\limits_{n=0}^\infty a_n x^n$ is an even and continous function, then $a_n=0$ for odd $n$, and if f is an odd function, then $a_n=0$ for even $n$.

I tried solving it by using the fact that if $f(x)$ is even, the $f(x)=f(-x)$, and ended up with this:$$f(x)=\sum_{n=0}^\infty a_n x^n = a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+...$$ and $$f(-x)=\sum_{n=0}^\infty a_n (-x)^n = a_0-a_1x+a_2x^2-a_3x^3+a_4x^4-...$$ where for odd $n$, the terms in $f(-x)$ are negative. I did the same for odd functions $f(-x)=-f(x)$: $$f(-x)=\sum_{n=0}^\infty a_n (-x)^n = a_0-a_1x+a_2x^2-a_3x^3+a_4x^4-...$$and$$-f(x)=\sum_{n=0}^\infty -(a_n (x)^n) = -a_0-a_1x-a_2x^2-a_3x^3-a_4x^4-...$$After that I add both,like this:

if $f$ is even $2f(x)=f(x)+f(-x)$ thus $$f(x)=\frac{f(x)+f(-x)}{2}=a_0+a_2x^2+a_4x^4+a_6x^6+...$$

and if $f$ is odd $2f(x)=f(-x)+(-f(x))$ thus $$f(x)=\frac{f(-x)+(-f(x))}{2} = -a_1x-a_3x^3-a_5x^5-a_7x^7-...$$ I'm stuck here, I don't know what else should I do. Help me please.

rtybase
  • 17,398

0 Answers0