Linking this question purely for the links to the theoretical material (and to some extent, similarity).
From Euler's summation formula
$$\sum\limits_{y< n\leq x}f(n)= \int\limits_{y}^{x}f(t)dt + \int\limits_{y}^{x}\{t\}f'(t)dt-\{x\}f(x)+\{y\}f(y) \tag{1}$$
and
$$\int \frac{\ln{x}}{x^2} dx=-\frac{\ln{x} + 1}{x} + C \tag{2}$$
we have ($n=1$ is trivial, we will consider $n\geq2$)
$$\sum\limits_{2\leq n\leq x}\frac{\ln{n}}{n^2}=
\int\limits_{2}^{x}\frac{\ln{t}}{t^2}dt+\int\limits_{2}^{x}\{t\}\frac{1-2\ln{t}}{t^3}dt-\{x\}\frac{\ln{x}}{x^2}=\\
\frac{\ln{2}+1}{2}-\frac{\ln{x}+1}{x}+\int\limits_{2}^{x}\{t\}\frac{1-2\ln{t}}{t^3}dt-\{x\}\frac{\ln{x}}{x^2} \tag{3}=...$$
Now, $\forall x\geq2$
$$\left|\{x\}\frac{\ln{x}}{x^2}\right|\leq \frac{\ln{x}}{x^2}$$
and (it's worth noting that $2\ln{2}-1>0$)
$$\left|\int\limits_{2}^{x}\{t\}\frac{1-2\ln{t}}{t^3}dt\right| \leq \int\limits_{2}^{x}\left|\{t\}\frac{1-2\ln{t}}{t^3}\right|dt \leq
\int\limits_{2}^{x}\left|\frac{1-2\ln{t}}{t^3}\right|dt=\\
\int\limits_{2}^{x}\frac{2\ln{t}-1}{t^3}dt=-\frac{\ln{x}}{x^2}+\frac{\ln{2}}{2^2}$$
this shows that
$\int\limits_{2}^{\infty}\{t\}\frac{1-2\ln{t}}{t^3}dt=I$ exists (by taking $\lim\limits_{x\rightarrow\infty}$) and
$$\int\limits_{2}^{x}\{t\}\frac{1-2\ln{t}}{t^3}dt=I-\int\limits_{x}^{\infty}\{t\}\frac{1-2\ln{t}}{t^3}dt=
I+\int\limits_{x}^{\infty}\{t\}\frac{2\ln{t}-1}{t^3}dt\leq \\
I+\int\limits_{x}^{\infty}\frac{2\ln{t}-1}{t^3}dt=I+\frac{\ln{x}}{x^2}$$
Continuing from $(3)$
$$...=\frac{\ln{2}+1}{2}+I-\frac{\ln{x}+1}{x}+O\left(\frac{\ln{x}}{x^2}\right)=
E-\frac{\ln{x}+1}{x}+O\left(\frac{\ln{x}}{x^2}\right) \tag{3a}$$
where $E$ is a constant. From $(3a)$ we see that
$$\lim\limits_{x\rightarrow\infty} \left(\sum\limits_{2\leq n\leq x}\frac{\ln{n}}{n^2}\right)=E \tag{4}$$
which simply means
$$\sum\limits_{2\leq n\leq x}\frac{\ln{n}}{n^2}=O(1) \tag{5}$$
Also, Chebyshev's function has the property that
$$\lim\limits_{x\rightarrow\infty}\frac{\theta(x)}{x}=1 \Rightarrow \theta(x)=O(x) \tag{6}$$
All these together
$$x\left(\sum\limits_{2\leq n\leq x}\frac{\ln{n}}{n^2}\right)+\theta(x)=xO(1)+O(x)=O(x)$$