I have a proof that requires the following justification. So, I decided to recast it in the following form:
If $\lim\limits_{n\to\infty}b_n$ exists and $\limsup_{n\to\infty}{a_n}=a>0$, then $\limsup_{n\to\infty}{a_n}^{b_n}= \limsup_{n\to\infty}{a_n}^{\lim\limits_{n\to\infty}b_n}$
My proof
\begin{align} \limsup_{n\to\infty}{a_n}^{b_n}&=\limsup_{n\to\infty}e^{\ln{a_n}^{b_n}}\\&=\limsup_{n\to\infty}e^{b_n\ln{a_n}}\\&=e^{\limsup_{n\to\infty}(b_n\ln{a_n})}\\&=e^{\lim\limits_{n\to\infty}b_n\limsup_{n\to\infty}\ln{a_n}}\\&=e^{\lim\limits_{n\to\infty}b_n\ln{(\limsup_{n\to\infty}a_n)}}\\&=e^{\lim\limits_{n\to\infty}b_n\ln{a}}\\&=e^{\ln{a}^{\lim\limits_{n\to\infty}b_n}}\\&={a}^{\lim\limits_{n\to\infty}b_n}\\&={\limsup_{n\to\infty}{a_n}}^{\lim\limits_{n\to\infty}b_n}\end{align} Please, is this correct? And is there any other proof?