Several CAS I used for $$I=\int{\frac{dx}{\sqrt{x(1+x^2)}}}$$ express it as an awful elliptic integral but
it can be "simplified" as $$I=2 \sqrt{x} \,\, _2F_1\left(\frac{1}{4},\frac{1}{2};\frac{5}{4};-x^2\right)+C$$ where appears the Gaussian or ordinary hypergeometric function.
If you want an acceptable approximation of it for the integral for $0 \leq x \leq 2$ , you could use the following Padé approximant built at $x=0$
$$2 \sqrt x\,\, \frac{1+\frac{96645617 }{53568140}x^2+\frac{31538874293
}{31069521200}x^4+\frac{3758605721543 }{20195188780000}x^6+\frac{791037744588979
}{123594555333600000}x^8} {1+\frac{102002431 }{53568140}x^2+\frac{108481355723
}{93208563600}x^4+\frac{384016013641 }{1553476060000}x^6+\frac{30608751719
}{2485561696000}x^8}$$ which is in error of $6.86\times 10^{-6}\text{ %}$ at $x=1$ but $1.13\times 10^{-2}\text{ %}$ at $x=2$.
For infinitely large values of the upper bound, we can expand the interand and integrate termwise to get
$$\color{blue}{\frac{\Gamma \left(\frac{1}{4}\right)^2}{2 \sqrt{\pi }}-\sum_{n=0}^\infty \binom{-\frac{1}{2}}{n}\frac{ x^{-2 n-\frac{1}{2}}}{2 n+\frac{1}{2}}}$$ which gives the asymptotics and simple ways to approximate the value of the definite integral. For example, using $\color{red}{10}$ terms only in the summation gives for fiteen significant figures
$$\left(
\begin{array}{ccc}
x & \text{approximation} & \text{exact} \\
1.0 & \color{blue}{1.85}008944498406 & 1.85407467730137 \\
1.5 & \color{blue}{2.136962}08793742 & 2.13696267480776 \\
2.0 & \color{blue}{2.32606419}317845 & 2.32606419421172 \\
2.5 & \color{blue}{2.46224022503}003 & 2.46224022503732 \\
3.0 & \color{blue}{2.565720296556}84 & 2.56572029655697 \\
3.5 & \color{blue}{2.64754771012530} & 2.64754771012530
\end{array}
\right)$$ and all of this being easy to compute since
$$a_n=\binom{-\frac{1}{2}}{n}\frac{ x^{-2 n-\frac{1}{2}}}{2 n+\frac{1}{2}}\implies a_{n+1}=-\frac{(2 n+1) (4 n+1)}{2 (n+1) (4 n+5) x^2}\, a_n$$