There is a nice way of getting everything you ask if you have a factorization
of the characteristic polynomial. It uses only the Cayley-Hamilton theorem
that if the characteristic polynomial of $A$ is the polynomial
$\operatorname{Char}_{A}\left( X\right) $, then $\operatorname{Char}%
_{A}\left( A\right) =0$. It also has built in checks of your work. (It helps
of course to have a CAS do the arithmetic.) An extension of this to higher
dimensions can be used to prove the nature of the Jordan Canonical Form. One
minor comment: I write my JCF with the $1$'s below the diagonal.
Here you have
$$
A =%
\left[\begin{matrix}
6 & 9 & 15\\
-5 & -10 & -21\\
2 & 5 & 11
\end{matrix}\right]
{\mathrm{\ and\ }}
\operatorname{Char}_{A}\left( X\right) =X^{3}-7X^{2}+16X-12=\left(
X-3\right) \left( X-2\right) ^{2} $$
$$\operatorname{Char}_{A}\left( A\right) =(A-3\mathbf{I})\cdot\left(
A-2\mathbf{I}\right) ^{2}=
\left[\begin{matrix}
3 & 9 & 15\\
-5 & -13 & -21\\
2 & 5 & 8
\end{matrix}\right]
\cdot%
\left[\begin{matrix}
4 & 9 & 15\\
-5 & -12 & -21\\
2 & 5 & 9
\end{matrix}\right]
^{2} $$
$$=
\left[\begin{matrix}
3 & 9 & 15\\
-5 & -13 & -21\\
2 & 5 & 8
\end{matrix}\right]
\left[\begin{matrix}
1 & 3 & 6\\
-2 & -6 & -12\\
1 & 3 & 6
\end{matrix}\right]
=
\left[\begin{matrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{matrix}\right] $$
Now the column space of $\left( A-2\mathbf{I}\right) ^{2}$ is the kernel of
$(A-3\mathbf{I})$, so an eigenvector for eigenvalue $3$ is $%
\left[\begin{matrix}
1\\
-2\\
1
\end{matrix}\right]
$ and this spans the generalized eigenspace for eigenvalue $3$. Similarly the
generalized eigenspace for eigenvalue $2$ is the column space of
$(A-3\mathbf{I})=
\left[\begin{matrix}
3 & 9 & 15\\
-5 & -13 & -21\\
2 & 5 & 8
\end{matrix}\right]
$. Now look at
\begin{align*}
\left( A-2\mathbf{I}\right) (A-3\mathbf{I}) & =
\left[\begin{matrix}
4 & 9 & 15\\
-5 & -12 & -21\\
2 & 5 & 9
\end{matrix}\right]
\cdot%
\left[\begin{matrix}
3 & 9 & 15\\
-5 & -13 & -21\\
2 & 5 & 8
\end{matrix}\right]
=
\left[\begin{matrix}
-3 & -6 & -9\\
3 & 6 & 9\\
-1 & -2 & -3
\end{matrix}\right]
\neq%
\left[\begin{matrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{matrix}\right]
\\
\left( A-2\mathbf{I}\right) \left( A-2\mathbf{I}\right) (A-3\mathbf{I}) &
=\left[\begin{matrix}
4 & 9 & 15\\
-5 & -12 & -21\\
2 & 5 & 9
\end{matrix}\right]
\cdot
\left[\begin{matrix}
-3 & -6 & -9\\
3 & 6 & 9\\
-1 & -2 & -3
\end{matrix}\right]
=
\left[\begin{matrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{matrix}\right]
\end{align*}
That is all the arithmetic we have to do, with additional checks built in. For
the transition matrix we take column 1 an eigenvector for eigenvalue $3$,
column 3 an eigenvector for eigenvalue 2, say $
\left[\begin{matrix}
-3\\
3\\
-1
\end{matrix}\right]
\ $ which is the first column of $\left( A-2\mathbf{I}\right) (A-3\mathbf{I}
)$ and for column 2 the same (first) column of $(A-3\mathbf{I})$ that is
$
\left[\begin{matrix}
3\\
-5\\
2
\end{matrix}\right]
$ to get
$$
P=
\left[\begin{matrix}
1 & 3 & -3\\
-2 & -5 & 3\\
1 & 2 & -1
\end{matrix}\right]
$$
I check this by my CAS: $P^{-1}AP=
\left[\begin{matrix}
3 & 0 & 0\\
0 & 2 & 0\\
0 & 1 & 2
\end{matrix}\right]
.$
Note that you get the algebraic multiplicity from the characteristic polynomial, the geometric multiplicity and JCF and transition matrix for my JCF without solving any systems of linear equations. If you want your $1$'s above the diagonal, work with rows rather than columns, that is, transpose everything.