Consider measurable spaces $(A_1,\mathcal{A}_1)$, $(A_2,\mathcal{A}_2)$ and their product $\sigma$-algebra $(A_1\times A_2,\mathcal{A}_1\otimes \mathcal{A}_2)$. I want to show, that
$$f:A_1\times A_2\longrightarrow\mathbb{R}$$
is measurable. Is it sufficient, to show that for any $a_1\in A_1$, $a_2\in A_2$ the functions
$$f(\cdot,a_2):A_1\longrightarrow\mathbb{R}$$
$$f(a_1,\cdot):A_2\longrightarrow\mathbb{R}$$
are measurable?