Given the following sentences:
Let $X_1,..., X_n$ be a random sample from a $Pois(\mu)$ distribution. Consider the following estimator for $e^{-\mu}=P(X_i=0)$: $T=e^{-\overline{X_n}}$.
The independent random variables $X_1;...;X_n$ have a geometric distribution with parameter $p$. Look at the following estimator for $p$: $S=\frac{1}{\overline{X_n}}$.
Prove that the estimators are biased.
In my opinion both estimators are unbiased:
$E[T]=e^{E[\overline{X_n}]}=e^{-\mu}$ that is unbiased for the parameter $e^{-\mu}$.
$E[S]=\frac{1}{E[\overline{X_n}]}=\frac{1}{1/p}=p$ that is unbiased for the parameter $p$.
Why I'm wrong in both cases? Where are my mistakes? Thanks.