Can someone please unveil the steps for this answer?
Thus $$ \frac{f(x)}{g(x)}\approx \color{red}{\frac{f'(a)(x-a)+f(a)}{g'(a)(x-a)+g(a)}}. $$ Taking the limit of the right hand side gives $\dfrac{f'(a)}{g'(a)}$.
Because $x \to a \iff x- a \to 0$, then
$$\lim_{x \to a} \color{red}{\dfrac{f'(a)(x-a)+f(a)}{g'(a)(x-a)+g(a)}} = \dfrac{f'(a)\times0 + f(a)}{g'(a)\times0 + g(a)}$$
Now what?