The Gold APN is defined as $F(x)=x^{2^{k}+1}$ in $GF(2^n)$, where $\gcd(k,n)=1$. The differential uniformity computed using $F(x)=F(x+a)=b$ as following:
$$x^{2^{k}+1} + (x+a)^{2^{k}+1}=b$$
$$x^{2^{k}+1} + (x+a)^{2^{k}}(x+a)=b$$
$$x^{2^{k}+1} + (x^{2^k}+a^{2^k})(x+a)=b$$
$$x^{2^{k}+1} + x^{2^{k}+1} +x^{2^k}a +a^{2^k}x +a^{2^{k}+1} =b$$
$$x^{2^k}a +a^{2^k}x =b +a^{2^{k}+1}.$$
Dividing both sides by $a^{2^k+1}$:
$$x^{2^k}(a^{-1})^{2^k}+xa^{-1}=b(a^{2^k+1})^{-1}+1.$$
From this point onward, I got stuck to prove that the Gold APN has two solutions using trace functions.
If solution exists
$$\operatorname{tr}(x^{2^k}(a^{-1})^{2^k}+xa^{-1})=0=\operatorname{tr}(b(a^{2^k+1})^{-1}+1)$$
Q1: How to apply the trace function to find the roots of the differential uniformity function?