I got four elements and want to check whether these elements are associated or not. For $\alpha = \frac{1+\sqrt{-3}}{2}$ my elements are:
$a_1 = 2 - \alpha = \frac{3 - \sqrt{-3}}{2}$
$a_2 = 1 - 2\alpha = -\sqrt{-3}$
$ a_3 = 3 + 2\alpha = 4 + \sqrt{-3}$
$ a_4 = 3 - 2\alpha = 2 - \sqrt{-3}$
I just calculated $\frac{a_1}{a_2} = \frac{1-\sqrt{-3}}{2}$ and $\frac{a_2}{a_1} = \frac{-1+\sqrt{-3}}{2}$. All other pairs $\frac{a_1}{a_3}, \frac{a_1}{a_4},\frac{a_2}{a_3} \frac{a_2}{a_4}, \frac{a_3}{a_4}$ give an odd denominator which is not possble in $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ (except the denomitor 1), therefore only $a_1$ and $a_2$ are associated... is this right? Or do I miss something?
Thx for any help on this