The method I give can be applied to a number of sums, as I have been discovering.
We have
\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{2n+1} & = \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n}
\nonumber \\
& = \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n} \int_0^\infty e^{-y} dy
\nonumber \\
& = \sum_{n=1}^\infty \sin \dfrac{\pi n}{2} \int_0^\infty e^{-nx} dx
\nonumber \\
& = \frac{1}{2i} \sum_{n=1}^\infty \int_0^\infty (e^{-nx + \frac{i\pi n}{2}} - e^{-nx + \frac{-i\pi n}{2}}) dx
\nonumber \\
& = \frac{1}{2i} \int_0^\infty \left( \dfrac{1}{1-e^{-x + \frac{i\pi}{2}}} - \dfrac{1}{1-e^{-x + \frac{-i\pi}{2}}} \right) dx
\nonumber \\
& = \int_0^\infty \dfrac{1} {e^x + e^{-x}} dx
\end{align*}
You can use the fact that $\frac{d}{dx} \tan^{-1} (\sinh x) = \frac{1}{\cosh x}$ to obtain:
\begin{align*}
\frac{1}{2} \int_0^\infty \dfrac{2}{e^x + e^{-x}} dx = \frac{1}{2} [\tan^{-1} (\sinh x)]_0^\infty = \frac{\pi}{4} .
\end{align*}