About 2 years ago I discovered a lot of pretty nice series that relate $\pi$ and $e$, for instance :
$$\sum_{n=1}^{\infty}\frac{n^2}{16n^4-1}=\frac{\pi}{32}\cdot\frac{e^{\pi}+1}{e^{\pi}-1}$$
$$\sum_{n=1}^{\infty}\frac{n^2}{4n^4+1}=\frac{\pi}{8}\cdot\frac{e^{\pi}-1}{e^{\pi}+1}$$
$$\sum_{n=1}^{\infty}\frac{n^2}{(4n^4+1)(16n^4-1)}=\frac{\pi}{10}\cdot\frac{e^{\pi}}{e^{2\pi}-1}$$
$$\sum_{n=1}^{\infty}\frac{n^2(32n^4+3)}{(4n^4+1)(16n^4-1)}=\frac{\pi}{4}\cdot\frac{e^{2\pi}+1}{e^{2\pi}-1}$$
$$\sum_{n=1}^{\infty}\frac{n^2(64n^4+11)}{(4n^4+1)(16n^4-1)}=\frac{\pi}{2}\cdot\frac{e^{3\pi}-1}{(e^{2\pi}-1)(e^{\pi}-1)}$$
If you're looking for any mathematical identity that relates $\pi$ and $e$, I can also suggest :
$\cdot$ The Stirling limit : $$\lim_{n\to\infty}\frac{n!e^n}{n^n\sqrt{n}}=\sqrt{2\pi}$$
$\cdot$ The well known integral : $$\int_{-\infty}^{\infty}\frac{\cos(x)}{x^2+1}\text{d}x=\frac{\pi}{e}$$
$\cdot$ Victor Adamchik's integrals : $$\int_{-\infty}^{\infty}\frac{\text{d}x}{(e^x-x+1)^2+\pi^2}=\frac{1}{2}$$ $$\int_{-\infty}^{\infty}\frac{\text{d}x}{(e^x-x)^2+\pi^2}=\frac{1}{1+\Omega}$$
Where $\Omega$ is the mathematical constant defined by $\text{ }\Omega e^{\Omega}=1$.
Hope this helps.