I needed to find: $$\lim\limits_{x\to +\infty}(x-\ln(x^2+1))$$
So here are the steps I took:
Step 1: Replace $x$ with $\ln(e^x)$: $$\lim\limits_{x\to +\infty}\left(\ln(e^x)-\ln(x^2+1)\right)$$ $$\lim\limits_{x\to +\infty}\ln\left(\frac{e^x}{x^2+1}\right)$$
Step 2: Bring the limit inside of the natural log function since it is continuous on the required interval.
$$\ln\left(\lim_{x\to +\infty}\frac{e^x}{x^2+1}\right)$$
Step 3: Apply L'Hospital's rule twice and evaluate:
$$\ln\left(\lim_{x\to +\infty}e^x\right)$$
$$\ln(+\infty) = +\infty$$
My question is whether step 2 is valid here because $\lim\limits_{x\to \infty}\frac{e^x}{x^2 + 1}$ doesn't exist (its $+\infty$), and in order to move the limit operator inside the function the limit $\lim\limits_{x\to \infty}\frac{e^x}{x^2 + 1}$ must exist according to this theorem in a book about Calculus (ISBN 978-0-470-64769-1):
If it's not valid, what would be a valid way to find the limit?