Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y,$ normed linear maps. Then, $B(X,Y) $ is a Banach Space if $Y$ is.
Remark: I've seen this question before $Y$ is a Banach space if $B(X,Y)$ is a Banach space, but it is the converse of my question statement.
MY TRIAL
Let $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ s.t. $T_n\to T,\;\text{as}\;n\to\infty. $ So, $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ implies for each $x\in X,\;T_{n}(x)\in Y.$ Since $Y$ is complete, $T_n(x)\to T(x)\in Y,\;\text{as}\;n\to\infty,\;\forall\;x\in X. $ i.e., $T:X\to Y. $
Also, $T_n\in B(X,Y),\;\forall\;n\in \Bbb{N} $ implies there exists $K\geq 0,$ s.t. $\forall\;n\in \Bbb{N},\;\forall\;x\in X, $ \begin{align} \Vert T_n(x)\Vert \leq K \Vert x\Vert. \end{align} As $n\to\infty,$ \begin{align} \lim\limits_{n\to \infty}\Vert T_n(x)\Vert= \Vert \lim\limits_{n\to \infty}T_n(x)\Vert= \Vert T(x)\Vert\leq K \Vert x\Vert, \end{align} which implies $T\in B(X,Y)$ and hence, $ B(X,Y)$ is a Banach space.
Please, kindly check if I'm right or wrong. If it turns out that I'm wrong, kindly provide an alternative proof. Regards!