Let $R$ a commutative ring with unity, and let $I,J\trianglelefteq R$ ideals such that $I+J=R$. Prove that $IJ=I\cap J$. Recall $IJ=\{\sum_{k=1}^n i_kj_k:i_k\in I,j_k\in J, k\in \mathbb{N} \}$.
I have shown that $IJ\subseteq I\cap J$. The rest of the solution does not use the commutativity of $R$ so my question is where is the mistake:
Let $a\in I\cap J$. $a=a\cdot 1\in IJ$ thus $I\cap J=IJ$.