$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\require{cancel}\bcancel{\cancel{n + 1 + m \choose n + 1}} =
\sum_{k = 0}^{m}\pars{k + 1}{n + m - k \choose n}:\ {\LARGE ?}}$.
The right answer is
$\bbx{\ds{n + m + 2 \choose n + 2}}$
$$
\bbx{\mbox{Note that}\ {n + m - k \choose n} = 0\
\mbox{when}\ k > m}
$$
\begin{align}
&\bbox[10px,#ffd]{\sum_{k = 0}^{m}\pars{k + 1}
{n + m - k \choose n}} =
\sum_{k = 0}^{\infty}\pars{k + 1}{n + m - k \choose m - k}
\\[5mm] = &\
\sum_{k = 0}^{\infty}\pars{k + 1}
\bracks{{-n - 1 \choose m - k}\pars{-1}^{m - k}}
\\[5mm] = &\
\pars{-1}^{m}\sum_{k = 0}^{\infty}\pars{k + 1}\pars{-1}^{k}
\bracks{z^{m - k}}\pars{1 + z}^{-n - 1}
\\[5mm] = &\
\pars{-1}^{m}\bracks{z^{m}}\pars{1 + z}^{-n - 1}
\sum_{k = 0}^{\infty}\pars{k + 1}\pars{-z}^{k}
\\[5mm] = &\
\pars{-1}^{m}\bracks{z^{m}}\pars{1 + z}^{-n - 1}\,
\pars{-\,\partiald{}{z}\sum_{k = 0}^{\infty}\pars{-z}^{k + 1}}
\\[5mm] = &\
\pars{-1}^{m}\bracks{z^{m}}\pars{1 + z}^{-n - 1}\,
\partiald{}{z}\pars{z \over 1 + z} =
\pars{-1}^{m}\bracks{z^{m}}\pars{1 + z}^{-n - 3}
\\[5mm] = &\
\pars{-1}^{m}{-n - 3 \choose m} =
\pars{-1}^{m}\bracks{{n + 3 + m - 1\choose m}\pars{-1}^{m}}
\\[5mm] = &\
\bbx{n + m + 2 \choose n + 2}
\end{align}