If $ \displaystyle\sum_{n=1}^{\infty} a_n $ is convergent then discuss the convergence or divergence of the following series whose $n^{th}$ term is
- $ a_n \sin n $
- $\displaystyle \frac {a_n}{1+| a_n |}$
If $\displaystyle \sum _{n=1}^{\infty} a_n $ is absolutely convergent then then $\displaystyle \sum_{n=1}^{\infty} a_n \sin n $ and $\displaystyle \sum _{n=1}^{\infty} \dfrac {a_n}{1+|a_n|} $ are convergent. But what if $\displaystyle \sum _{n=1}^{\infty} a_n $ is conditionally convergent. A little hint would be appreciated. Thanks in advance.