2

Denote $$z=(2^{19}-1)\cdot10^6+2^{18}-1$$ $$a=ord_2(z)$$ $$b=ord_{10}(z)$$

The object is to find a positive integer of the form $$n=ka+19$$ with positive integer $k$ such that $$m=f(n)=\lceil(n-1)\cdot log_2(10)\rceil$$ is of the form $$m=lb+6$$

Motivation : An "ec-number" has the form $$ec(n)=(2^n-1)\cdot 10^m+2^{n-1}-1$$ where $m$ is the number of decimal digits of $2^{n-1}$. I want to find an exponent $n>19$ , such that $$ec(19)\mid ec(n)$$ If it helps, $z=ec(19)$ is a prime number.

Peter
  • 86,576
  • https://math.stackexchange.com/questions/2635516/a-conjecture-about-numbers-of-the-form-10m2k%e2%88%9212k-1%e2%88%921-where-m-is – Peter Dec 08 '18 at 12:06

0 Answers0