Answers
(Q1)
$\|\mathbf{x}(\mu)\|^2$ is monotonically decreasing without jump discontinuities for $\mu \geq 0$ with $\lim_{\mu \to \infty}\|\mathbf{x}(\mu)\|^2 = |\gamma|^2/\|\mathbf{c}\|^2$. If for a fixed $\mu: 0 \leq \mu < \infty$ the solution is
$\mathbf{x}^* = \gamma \mathbf{c} /\|\mathbf{c}\|^2$, then this is the solution for all non-negative values of $\mu$.
For $\mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.
(Q2)
Yes, see below.
(Q3)
Yes and the global optimal solution is given by $\mathbf{x}^* = \mathbf{x}(\mu^*)$, with $\mathbf{x}(\mu)$ from (6). Although this solution also holds for the case $\alpha^2 = |\gamma|^2/\|\mathbf{c}\|^2$, where the only allowed solution is the one for $\mu \to \infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $\mathbf{x}^* = \gamma \mathbf{c} /\|\mathbf{c}\|^2$.
Strategy for numerical solution
For $\alpha^2 = |\gamma|^2/\|\mathbf{c}\|^2$, no calculation is necessary since the only allowed solution is $\mathbf{x}^* = \gamma \mathbf{c} /\|\mathbf{c}\|^2$.
For $\alpha^2 > |\gamma|^2/\|\mathbf{c}\|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $\mathbf{x}(\mu)$ according to (6), starting with $\mu=0$ and increase $\mu$ until (C1) holds.
No solution exists obviously for $\alpha^2 < |\gamma|^2/\|\mathbf{c}\|^2$.
Proofs/Reasons
(Q1)
We first investigate the asymptotic solution for large $\mu$.
As a first step we divide the first row of (3) by $\mu$:
$$
\left(A^{\dagger} A/\mu + I\right) \mathbf{x}(\mu) + \mathbf{c} \lambda(\mu)/\mu = \mathbf{y}/\mu.\tag{A1}\label{A1}
$$
Multiplying \eqref{A1} from the left with $\mathbf{c}^{\dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
$$
\lim_{\mu \to \infty}\lambda(\mu)/\mu = -\gamma/\|\mathbf{c}\|^2\tag{A2}.\label{A2}
$$
With \eqref{A2} in the asymptotic limit of \eqref{A1}, we find
$$
\lim_{\mu \to \infty} \mathbf{x}(\mu) = \gamma \mathbf{c} /\|\mathbf{c}\|^2=:\mathbf{x}_{\infty},\tag{A3}\label{A3}
$$
and thus
$$
\lim_{\mu \to \infty} \|\mathbf{x}(\mu)\|^2 = |\gamma|^2/\|\mathbf{c}\|^2.\tag{A4}\label{A4}
$$
To investigate the monotonicity of $\|\mathbf{x}(\mu)\|^2$ we start with differentiating (3) w.r.t. $\mu$: The first row yields
$$
\mathbf{x}(\mu) + (A^{\dagger}A + \mu I) \mathbf{x}'(\mu) + \mathbf{c}\lambda'(\mu) = 0,\tag{A5}\label{A5}
$$ and the second row the trivial condition $\mathbf{c}^{\dagger} \mathbf{x}'(\mu) = 0$. We use for the function derivative w.r.t. $\mu$ the abbreviation $u'(\mu) \equiv \rm{d}\, u(\mu)/\rm{d}\mu$.
Multiplying \eqref{A5} with $\mathbf{c}^{\dagger}$ from left we obtain
$$
\gamma + \mathbf{c}^{\dagger} A^{\dagger}A\mathbf{x}'(\mu) + \|\mathbf{c}\|^2\lambda'(\mu) = 0,\tag{A6}\label{A6}
$$
which yields
$$
\lambda'(\mu) = -\dfrac{
\gamma + \mathbf{c}^{\dagger}A^{\dagger}A \mathbf{x}'(\mu)}{\|\mathbf{c}\|^2}.\tag{A7}\label{A7}
$$
Using \eqref{A7} in \eqref{A5} we get a conditional equation for $\mathbf{x}'(\mu)$:
$$
\left(\left(I - \dfrac{\mathbf{c}\mathbf{c}^{\dagger}}{\|\mathbf{c}\|^2}\right)A^{\dagger}A + \mu I\right) \mathbf{x}'(\mu) = \frac{\gamma \mathbf{c}}{\|\mathbf{c}\|^2} - \mathbf{x}(\mu).\tag{A8}\label{A8}
$$
On the left hand side the orthogonal projector $P:=I - \mathbf{c}\mathbf{c}^{\dagger}/\|\mathbf{c}\|^2$ appears that maps elements of $\mathbb{C}^n$ to $\mathcal{U} = \{\mathbf{x} \in \mathbb{C}^n \mid \mathbf{c}^{\dagger}\mathbf{x} = 0\}\subset \mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $\mathbf{c}$. Multiplying \eqref{A8} with $P$ from left we get:
$$
\left(PA^{\dagger}A + \mu P \right) \mathbf{x}'(\mu) = -P\mathbf{x}(\mu).\tag{A9}\label{A9}
$$
Since $\mathbf{c}^{\dagger} \mathbf{x}'(\mu) = 0$, which is equivalent to $P\mathbf{x}'(\mu) = \mathbf{x}'(\mu)$, we can further write
$$
\left(PA^{\dagger}AP + \mu P \right) \mathbf{x}'(\mu) = -P\mathbf{x}(\mu),\tag{A10}\label{A10}
$$
which is a linear equation on $\mathcal{U}$ only that completely determines $\mathbf{x}'(\mu)$. We expand \eqref{A10} in an orthonormal basis of $\mathcal{U}$ and use the following notation: $\mathbf{x}_{\mathcal{U}}(\mu)$, $\mathbf{x}'_{\mathcal{U}}(\mu)$ for the representation of $P\mathbf{x}(\mu)$, $\mathbf{x}'(\mu)$ in $\mathcal{U}$, $I_{\mathcal{U}}$ for the identity in $\mathcal{U}$ and $S_{\mathcal{U}}$ for the representation of $PA^{\dagger}AP$ in $\mathcal{U}$.
We can write
$$
\mathbf{x}'_{\mathcal{U}} = -\left(S_{\mathcal{U}} + \mu I_{\mathcal{U}}\right)^{-1}\mathbf{x}_{\mathcal{U}}(\mu),\tag{A11}\label{A11}
$$ and it follows
\begin{align}
\frac{\rm{d}}{\rm{d}\mu}\|\mathbf{x}(\mu)\|^2 & = \mathbf{x}'(\mu)^{\dagger}\mathbf{x}(\mu) + \mathbf{x}(\mu)^{\dagger}\mathbf{x}'(\mu)\tag{A12}\label{A12}\\
&=\mathbf{x}'(\mu)^{\dagger}P P \mathbf{x}(\mu) + \mathbf{x}(\mu)^{\dagger}PP\mathbf{x}'(\mu)\\
&=\mathbf{x}_{\mathcal{U}}'(\mu)^{\dagger}\mathbf{x}_{\mathcal{U}}(\mu) + \mathbf{x}_{\mathcal{U}}(\mu)^{\dagger}\mathbf{x}_{\mathcal{U}}'(\mu)\\
&=-2\mathbf{x}_{\mathcal{U}}(\mu)^{\dagger}\left(S_{\mathcal{U}} + \mu I_{\mathcal{U}}\right)^{-1}\mathbf{x}_{\mathcal{U}}(\mu).\tag{A13}\label{A13}
\end{align}
It can be readily seen from its definition that $S_{\mathcal{U}}$ is positive definite, hence $\left(S_{\mathcal{U}} + \mu I_{\mathcal{U}}\right)^{-1}$ is positive definite for $\mu \geq 0$. Since $A^{\dagger}A$ is also positive definite we obtain from (6) together with (7) that $\mathbf{x}(\mu)$ is not diverging for $\mu\geq 0$. Therefore, from \eqref{A13} we obtain $\frac{\rm{d}}{\rm{d}\mu}\|\mathbf{x}(\mu)\|^2 \leq 0$ for $\mu \geq 0$, that is $\|\mathbf{x}(\mu)\|^2$ is monotonically decreasing without jump discontinuities for $\mu \geq 0$. However, the monotonicity is not strict because $\rm{d}\|\mathbf{x}(\mu)\|^2/\rm{d}\mu$ vanishes when $\mathbf{x}_{\mathcal{U}}(\mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $\mathbf{x}_{\mathcal{U}}(\mu) = 0$ is $\mathbf{x}(\mu) = \gamma\mathbf{c}/\|\mathbf{c}\|^2 = \mathbf{x}_{\infty}$. Since this is also the asymptotic solution from \eqref{A3}, we have $\lim_{\mu \to \infty} \rm{d}\|\mathbf{x}(\mu)\|^2/\rm{d}\mu = 0$. Moreover, if (6) yields $\mathbf{x}_{\infty}$ for $\mu < \infty$, it must be the solution for all $\mu$.
For $\mu < 0$, $\left(S_{\mathcal{U}} + \mu I_{\mathcal{U}}\right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $\mu$ matches eigenvalues of $A^{\dagger}A$ or $S_{\mathcal{U}}$.
(Q2)
We have to distinguish two cases:
$\alpha^2 > |\gamma|^2/\|\mathbf{c}\|^2$:
With the monotonicity of $\|\mathbf{x}(\mu)\|^2$ for $\mu \geq 0$ and \eqref{A4}, we find a $\mu^\star: g(\mathbf{x}(\mu^\star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(\mathbf{x}^*,\mu^*, \lambda^*)$, where $\mathbf{x}^*$ is a local optimum for the optimization problem and $(\mu^*,\lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
\begin{align}
g(\mathbf{x}^*) &\leq 0,\tag{A14}\label{A14}\\
h(\mathbf{x}^*) &= 0,\tag{A15}\label{A15}\\
\mu^* &\geq 0,\tag{A16}\label{A16}\\
\mu^*g(\mathbf{x}^*) &= 0.\tag{A17}\label{A17}
\end{align}
\eqref{A16} answers the question for this case.
$\alpha^2 = |\gamma|^2/\|\mathbf{c}\|^2$:
Slater's condition does not hold, however, the only allowed solution is $\mathbf{x} = \mathbf{x}_{\infty}$, the asymptotic solution. Therefore, we have $\mu^* \to \infty$.
For both cases we get $\mu^*
\geq 0$.
(Q3)
For $\mathbf{x}(\mu)$ from (6), \eqref{A15} holds. The remaining task is to find the optimal $\mu^* \geq 0$ such that the remaining KKT-conditions hold. To satisfy \eqref{A17},
we require $\mu^* = 0$ if $g(\mathbf{x}(\mu^*=0)) < 0$ and $\mu^* >0$ otherwise. For the latter case we require $\|\mathbf{x}(\mu^*)\|^2 = \alpha^2$ such that (A14) holds. Due to the fact that $\|\mathbf{x}(\mu)\|^2$ is monotonically decreasing for $\mu \geq 0$, we find $\mu^* = \inf\, \{\mu \geq 0 \mid g(\mathbf{x}(\mu)) \leq 0\}$ and the global optimal solution is given by $\mathbf{x}^* = \mathbf{x}(\mu^*)$.