Let $g(x,y,z)$ be a polynomial with maximal degrees of $k, l, m$ in the variables $x,y,z$ respectively, using lexicographical ordering, we will write:
$$ g(x,y,z)= a_0 +a_1 x + \dots + a_k x^k + b_0 + b_1 y + \dots +b_l y^l + c_0 + c_1 z + \dots c_m z^m $$
Now we let $x,y,z \geq 1$, we can then approximate every single term by the product $x^k y^l z^m$, which is certainly greater than every single term.
$$g(x,y,z) \leq a_0 x^k y^l z^m + \dots + a_k x^k y^l z^m + b_0 x^k y^l z^m + \dots +b_l y^l + c_0 x^k y^l z^m + \dots c_m x^k y^l z^m $$
So we get that:
$$ g(x,y,z) \leq \left( \sum_{i=0}^k a_i+ \sum_{i=0}^l b_i + \sum_{i=0}^m c_i \right) x^k y^l z^m$$
We can now complete the proof:
Let $x, y, z \geq 1$ and choose $M=\left( \sum_{i=0}^k a_i+ \sum_{i=0}^k b_i + \sum_{i=0}^k c_i \right)$, we then have that:
$$ g(x,y,z) \leq M \cdot x^k y^l z^m$$
So $g(x,y,z) = \mathcal{O}(x^k y^l z^m)$. $\square$
Alternatively, if we assume that $g(x,y,z)$ is a polynomial of the form:
$$g(x,y,z)= \sum_{p=0}^m \sum_{j=0}^l \sum_{i=0}^k a_{ijp}x^i y^j z^p.$$
We can apply the same trick. We let $x,y,z, \geq 1$, we can now say that for all indices $i, j, p$ we have that: $$x^i y^j z^p \leq x^k y^l z^m $$
We can now approximate the sum by:
$$ g(x,y,z) \leq \sum_{p=0}^m \sum_{j=0}^l \sum_{i=0}^k a_{ijp}x^k y^l z^m = \left( \sum_{p=0}^m \sum_{j=0}^l \sum_{i=0}^k a_{ijp} \right) x^k y^l z^m $$
Now we let $M=\left( \sum_{p=0}^m \sum_{j=0}^l \sum_{i=0}^k a_{ijp} \right)$:
$$ g(x,y,z) \leq M x^k y^l z^m $$ And this is our desired result $\square$