Although highlighting via bolding and color-coding helps give an overview of what's going on below, it is still very tedious to follow, and I see no way to reduce the maze of tensors that appear in the initial expansions. If anyone can point out easier way verify the result, that certainly would be interesting.
Expanding the alternate curvature before the differential:
$\tilde ∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}
= \color{red}{\tilde ∇_{[α} R_{β γ]ρ}^{\ \ \ \ \ \ \ \ \ σ}}
- \color{magenta}{\tilde ∇_{[α} (T_{βγ]}^{\ \ \ \ \ δ} Q_{δρ}^{\ \ \ \ \ σ})}
+\color{green}{2\tilde ∇_{[α}(∇_{[β} Q_{γ]]ρ}^{\ \ \ \ \ \ \ σ})}
+\color{blue}{2\tilde ∇_{[α} (Q_{[β|δ|}^{\ \ \ \ \ \ \ \ σ}Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ})}$
$\color{red}{\tilde ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}}
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
+ Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ δ}
- Q_{[αβ}^{\ \ \ \ \ \ \ δ} R_{|δ|γ]ρ}^{\ \ \ \ \ \ \ \ \ \ σ}
- Q_{[αγ}^{\ \ \ \ \ \ δ} R_{β]δρ}^{\ \ \ \ \ \ \ \ σ}
- Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ δ} R_{βγ]δ}^{\ \ \ \ \ \ \ \ σ}$
$- \color{magenta}{\tilde ∇_{[α} (T_{βγ]}^{\ \ \ \ \ δ} Q_{δρ}^{\ \ \ \ σ})}
= -(\tilde ∇_{[α} T_{βγ]}^{\ \ \ \ δ}) Q_{δρ}^{\ \ \ \ σ}
- (\tilde ∇_{[α} Q_{|δρ|}^{\ \ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ \ δ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= -∇_{[α} (T_{βγ]}^{\ \ \ \ \ δ}) Q_{δρ}^{\ \ \ \ σ}
- Q_{[α|τ|}^{\ \ \ \ \ \ \ \ δ} T_{βγ]}^{\ \ \ \ τ} Q_{δρ}^{\ \ \ \ σ}
+ Q_{[αβ}^{\ \ \ \ \ \ τ} T_{|τ|γ}^{\ \ \ \ \ δ} Q_{δρ}^{\ \ \ \ σ}
+ Q_{[αγ}^{\ \ \ \ \ \ τ} T_{β]τ}^{\ \ \ \ δ} Q_{δρ}^{\ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- (∇_{[α} Q_{|δρ|}^{\ \ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ δ}
- Q_{[α|τ}^{\ \ \ \ \ \ \ \ σ} Q_{δρ|}^{\ \ \ \ \ τ} T_{βγ]}^{\ \ \ \ δ}
+ Q_{[α|δ}^{\ \ \ \ \ \ \ \ τ} Q_{τρ|}^{\ \ \ \ \ σ} T_{βγ]}^{\ \ \ \ δ} + Q_{[α|ρ}^{\ \ \ \ \ \ \ \ τ} Q_{δτ|}^{\ \ \ \ \ σ} T_{βγ]}^{\ \ \ \ δ}$
$\color{green}{2\tilde ∇_{[α}(∇_{[β} Q_{γ]]ρ}^{\ \ \ \ \ \ \ σ})}
= 2∇_{[α}(∇_{[β} Q_{γ]]ρ}^{\ \ \ \ \ \ \ σ})
+ 2Q_{[α|τ|}^{\ \ \ \ \ \ \ \ σ} ∇_β Q_{γ]ρ}^{\ \ \ \ \ \ τ}
- 2Q_{[αβ}^{\ \ \ \ \ \ \ τ} ∇_{[|τ|} Q_{γ]]ρ}^{\ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 2Q_{[αγ}^{\ \ \ \ \ \ \ τ} ∇_{[β]} Q_{τ]]ρ}^{\ \ \ \ \ \ σ}
- 2Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ τ} ∇_β Q_{γ]τ}^{\ \ \ \ \ \ σ}$
$\color{blue}{2\tilde ∇_{[α} (Q_{[β|δ|}^{\ \ \ \ \ \ \ \ σ}Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ})}
= 2(\tilde ∇_{[α} Q_{[β|δ|}^{\ \ \ \ \ \ \ \ σ})Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ}
- 2(\tilde ∇_{[α} Q_{[β|ρ|}^{\ \ \ \ \ \ \ \ δ})Q_{γ]]δ}^{\ \ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \
= 2(∇_{[α} Q_{β|δ|}^{\ \ \ \ \ \ \ \ σ})Q_{γ]ρ}^{\ \ \ \ \ \ \ δ}
+ 2Q_{[α|τ|}^{\ \ \ \ \ \ \ \ σ} Q_{[β|δ|}^{\ \ \ \ \ \ \ \ τ} Q_{γ]ρ}^{\ \ \ \ \ \ \ δ}
- 2Q_{[αβ}^{\ \ \ \ \ \ \ \ τ} Q_{[|τ||δ|}^{\ \ \ \ \ \ \ \ σ} Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ}
- 2Q_{[α|δ|}^{\ \ \ \ \ \ \ \ τ} Q_{β|τ|}^{\ \ \ \ \ \ \ σ} Q_{γ]ρ}^{\ \ \ \ \ \ δ}$
$\ \ \ \ \ \ \ \ \ \ \
- 2(∇_{[α} Q_{β|ρ|}^{\ \ \ \ \ \ \ δ})Q_{γ]δ}^{\ \ \ \ \ \ σ}
- 2Q_{[α|τ|}^{\ \ \ \ \ \ \ \ δ} Q_{[β|ρ|}^{\ \ \ \ \ \ \ \ τ} Q_{γ]δ}^{\ \ \ \ \ \ \ σ}
+ 2Q_{[αβ}^{\ \ \ \ \ \ \ \ τ} Q_{[|τ||ρ|}^{\ \ \ \ \ \ \ \ δ} Q_{γ]]δ}^{\ \ \ \ \ \ \ σ}
+ 2Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ τ} Q_{β|τ|}^{\ \ \ \ \ \ \ δ} Q_{γ]δ}^{\ \ \ \ \ \ σ}$
$ $
Substituting $\frac{1}{2} T_{αβ}^{\ \ \ \ γ}$ for $Q_{αβ}^{\ \ \ \ \ γ}\ $on RHSs:
$\color{red}{\tilde ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}}
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
+ \frac{1}{2} T_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ δ}
- \frac{1}{2} T_{[αβ}^{\ \ \ \ \ \ \ δ} R_{|δ|γ]ρ}^{\ \ \ \ \ \ \ \ \ \ σ}
- \frac{1}{2} T_{[αγ}^{\ \ \ \ \ \ δ} R_{β]δρ}^{\ \ \ \ \ \ \ \ σ}
- \frac{1}{2} T_{[α|ρ|}^{\ \ \ \ \ \ \ \ δ} R_{βγ]δ}^{\ \ \ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
+ T_{[αβ}^{\ \ \ \ \ \ \ δ} R_{γ]δρ}^{\ \ \ \ \ \ \ σ}
- ∇_{[α}(∇_β T_{γ]ρ}^{\ \ \ \ σ})
{\bf - \frac{1}{2} R_{[αβγ]}^{\ \ \ \ \ \ \ \ \ \ \ δ}T_{δρ}^{\ \ \ \ \ σ}}
+ \frac{1}{2} T_{[αβ}^{\ \ \ \ \ τ} ∇_{|τ|} T_{γ]ρ}^{\ \ \ \ σ}$
$- \color{magenta}{\tilde ∇_{[α} (T_{βγ]}^{\ \ \ \ \ δ} Q_{δρ}^{\ \ \ \ σ})}
= -(\tilde ∇_{[α} T_{βγ]}^{\ \ \ \ δ}) Q_{δρ}^{\ \ \ \ σ}
- (\tilde ∇_{[α} Q_{|δρ|}^{\ \ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ \ δ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= -\frac{1}{2} (∇_{[α} T_{βγ]}^{\ \ \ \ δ}) T_{δρ}^{\ \ \ σ}
- \frac{1}{4} T_{[α|τ|}^{\ \ \ \ \ δ} T_{βγ]}^{\ \ \ \ τ} T_{δρ}^{\ \ \ σ}
+ \frac{1}{4} T_{[αβ}^{\ \ \ \ \ τ} T_{|τ|γ]}^{\ \ \ \ \ δ} T_{δρ}^{\ \ \ σ}
+ \frac{1}{4} T_{[αγ}^{\ \ \ \ τ} T_{β]τ}^{\ \ \ \ δ} T_{δρ}^{\ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} (∇_{[α} T_{|δρ|}^{\ \ \ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ \ \ \ δ}
- \frac{1}{4} T_{[α|τ}^{\ \ \ \ \ \ σ} T_{δρ|}^{\ \ \ τ} T_{βγ]}^{\ \ \ \ δ}
+ \frac{1}{4} T_{[α|δ}^{\ \ \ \ \ τ} T_{τρ|}^{\ \ \ σ} T_{βγ]}^{\ \ \ \ δ}
+ \frac{1}{4} T_{[α|ρ}^{\ \ \ \ \ τ} T_{δτ|}^{\ \ \ σ} T_{βγ]}^{\ \ \ \ δ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= {\bf -\frac{1}{2} (∇_{[α} T_{βγ]}^{\ \ \ \ \ \ δ}) T_{δρ}^{\ \ \ \ σ}
- \frac{1}{2} T_{[αβ}^{\ \ \ \ \ \ τ} T_{γ]τ}^{\ \ \ \ \ \ δ} T_{δρ}^{\ \ \ \ σ}}
+ \color{purple}{\frac{1}{4} T_{[αγ}^{\ \ \ \ τ} T_{β]τ}^{\ \ \ \ δ} T_{δρ}^{\ \ \ σ}}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} (∇_{[α} T_{|δρ|}^{\ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ \ δ}
- \frac{1}{4} T_{[α|τ}^{\ \ \ \ \ \ σ} T_{δρ|}^{\ \ \ τ} T_{βγ]}^{\ \ \ \ δ}
+ \color{purple}{\frac{1}{4} T_{[α|δ}^{\ \ \ \ \ τ} T_{τρ|}^{\ \ \ σ} T_{βγ]}^{\ \ \ \ δ}}
+ \frac{1}{4} T_{[α|ρ}^{\ \ \ \ \ τ} T_{δτ|}^{\ \ \ σ} T_{βγ]}^{\ \ \ \ δ}$
$\color{green}{2\tilde ∇_{[α}(∇_{[β} Q_{γ]]ρ}^{\ \ \ \ \ \ \ σ})}
= ∇_{[α}(∇_β T_{γ]ρ}^{\ \ \ \ σ})
+ \color{cyan}{\frac{1}{2} T_{[α|τ|}^{\ \ \ \ \ \ σ} ∇_β T_{γ]ρ}^{\ \ \ \ τ}}
- \frac{1}{2} T_{[αβ}^{\ \ \ \ \ τ} ∇_{[|τ|} T_{γ]]ρ}^{\ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} T_{[αγ}^{\ \ \ \ \ τ} ∇_{[β]} T_{τ]]ρ}^{\ \ \ \ \ σ}
- \color{violet}{\frac{1}{2} T_{[α|ρ|}^{\ \ \ \ \ \ \ τ} ∇_β T_{γ]τ}^{\ \ \ \ σ}}$
$\color{blue}{2\tilde ∇_{[α} (Q_{[β|δ|}^{\ \ \ \ \ \ \ \ σ}Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ})}
= 2(\tilde ∇_{[α} Q_{[β|δ|}^{\ \ \ \ \ \ \ \ σ})Q_{γ]]ρ}^{\ \ \ \ \ \ \ δ}
- 2(\tilde ∇_{[α} Q_{[β|ρ|}^{\ \ \ \ \ \ \ \ δ})Q_{γ]]δ}^{\ \ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \
= \color{violet}{\frac{1}{2} (∇_{[α} T_{β|δ|}^{\ \ \ \ \ \ σ})T_{γ]ρ}^{\ \ \ \ \ δ}}
+ \color{orange}{\frac{1}{4} T_{[α|τ|}^{\ \ \ \ \ \ \ σ} T_{β|δ|}^{\ \ \ \ \ \ τ} T_{γ]ρ}^{\ \ \ \ δ}}
- \frac{1}{4} T_{[αβ}^{\ \ \ \ \ \ τ} T_{[|τ||δ|}^{\ \ \ \ \ \ \ \ σ} T_{γ]]ρ}^{\ \ \ \ \ δ}
- \color{olive}{\frac{1}{4} T_{[α|δ|}^{\ \ \ \ \ \ τ} T_{β|τ|}^{\ \ \ \ \ σ} T_{γ]ρ}^{\ \ \ \ δ}}$
$\ \ \ \ \ \ \ \ \ \ \
- \color{cyan}{\frac{1}{2} (∇_{[α} T_{β|ρ|}^{\ \ \ \ \ δ})T_{γ]δ}^{\ \ \ \ σ}}
- \color{olive}{\frac{1}{4} T_{[α|τ|}^{\ \ \ \ \ \ \ δ} T_{β|ρ|}^{\ \ \ \ \ \ \ τ} T_{γ]δ}^{\ \ \ \ σ}}
+ \frac{1}{4} T_{[αβ}^{\ \ \ \ \ \ τ} T_{[|τ||ρ|}^{\ \ \ \ \ \ \ \ \ δ} T_{γ]]δ}^{\ \ \ \ \ σ}
+ \color{orange}{\frac{1}{4} T_{[α|ρ|}^{\ \ \ \ \ \ τ} T_{β|τ|}^{\ \ \ \ \ δ} T_{γ]δ}^{\ \ \ \ \ σ}}$
$ $
All terms with three $T$s cancel:
The matching colored terms cancel directly. For the uncolored terms, expanding the second anti-symmetrization of the two terms with intersecting anti-symmetrizations reveals how they cancel in combination with the other two uncolored terms.
Except for the one in bold, all terms with two $T$s also cancel:
Again, matching colored terms cancel directly and expanding the intersecting symmetrizations reveals how the unbolded uncolored terms cancel.
The two terms with $∇_{[α}(∇_β T_{γ]ρ}^{\ \ \ \ \ \ \ σ})$ of course also cancel.
Finally, all the three bold terms cancel because of the non-torsion-free Bianchi symmetry, leaving the full expansion of $\tilde ∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}$ with only the first two terms of the final expansion of its first (red) term.
Having chosen $Q_{αβ}^{\ \ \ \ \ γ} = \frac{1}{2} T_{αβ}^{\ \ \ \ γ}\ $, $\tilde{T}\ $ is zero, so the torsion free version of Bianchi symmetry applies to $\tilde{R}\ $, in other words $\tilde ∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ} = 0\ $.
Therefore the first equation above reduces to
$0 = ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ} + T_{[αβ}^{\ \ \ \ \ \ \ δ} R_{γ]δρ}^{\ \ \ \ \ \ \ σ}\ $,
yielding the non-torsion-free version of the Bianchi identity for $∇$, $T$ and $R$
$\ $
Check by expanding the alternate differential first:
$\tilde ∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}
= \color{red}{∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}}
+ Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ δ}
- Q_{[αβ}^{\ \ \ \ \ \ \ δ} \tilde R_{|δ|γ]ρ}^{\ \ \ \ \ \ \ \ \ \ σ}
- Q_{[αγ}^{\ \ \ \ \ \ δ} \tilde R_{β]δρ}^{\ \ \ \ \ \ \ \ σ}
- Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ δ} \tilde R_{βγ]δ}^{\ \ \ \ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= \color{red}{∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}}
+ Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ δ}
- Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} T_{βγ]}^{\ \ \ \ τ} Q_{τρ}^{\ \ \ \ δ}
+ 2Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} ∇_β Q_{γ]ρ}^{\ \ \ \ \ \ δ}
+ 2Q_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} Q_{β|τ|}^{\ \ \ \ \ \ \ δ} Q_{γ]ρ}^{\ \ \ \ \ \ τ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- Q_{[αβ}^{\ \ \ \ \ \ \ δ} R_{|δ|γ]ρ}^{\ \ \ \ \ \ \ \ \ \ σ}
+ Q_{[αβ}^{\ \ \ \ \ \ δ} T_{|δ|γ]}^{\ \ \ \ \ \ τ} Q_{τρ}^{\ \ \ \ σ}
- 2Q_{[αβ}^{\ \ \ \ \ \ δ} ∇_{[|δ|} Q_{γ]]ρ}^{\ \ \ \ \ \ \ σ}
- 2Q_{[αβ}^{\ \ \ \ \ \ δ} Q_{[|δ||τ|}^{\ \ \ \ \ \ \ \ \ σ} Q_{γ]]ρ}^{\ \ \ \ \ \ \ τ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- Q_{[αγ}^{\ \ \ \ \ \ δ} R_{β]δρ}^{\ \ \ \ \ \ \ \ σ}
+ Q_{[αγ}^{\ \ \ \ \ \ δ} T_{β]δ}^{\ \ \ \ τ} Q_{τρ}^{\ \ \ \ σ}
- 2Q_{[αγ}^{\ \ \ \ \ \ δ} ∇_{[β]} Q_{δ]ρ}^{\ \ \ \ \ σ}
- 2Q_{[αγ}^{\ \ \ \ \ \ δ} Q_{[β]|τ|}^{\ \ \ \ \ \ \ \ \ σ} Q_{δ]ρ}^{\ \ \ \ \ τ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ \ δ} R_{βγ]δ}^{\ \ \ \ \ \ \ \ σ}
+ Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ \ δ} T_{βγ]}^{\ \ \ \ τ} Q_{τδ}^{\ \ \ \ σ}
- 2Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ \ δ} ∇_β Q_{γ]δ}^{\ \ \ \ \ \ σ}
- 2Q_{[α|ρ|}^{\ \ \ \ \ \ \ \ \ δ} Q_{β|τ|}^{\ \ \ \ \ \ \ σ} Q_{γ]δ}^{\ \ \ \ \ \ τ}$
$ $
Substituting $\frac{1}{2} T_{αβ}^{\ \ \ \ γ}$ for $Q_{αβ}^{\ \ \ \ \ γ}\ $:
$\tilde ∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ \ σ}
= \color{red}{∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}}
+ \frac{1}{2} T_{[α|δ|}^{\ \ \ \ \ \ \ σ} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ δ}
- \frac{1}{4} T_{[α|δ|}^{\ \ \ \ \ \ σ} T_{βγ]}^{\ \ \ \ τ} T_{τρ}^{\ \ \ δ}
+ \color{magenta}{\frac{1}{2} T_{[α|δ|}^{\ \ \ \ \ \ \ \ σ} ∇_β T_{γ]ρ}^{\ \ \ \ δ}}
+ \color{blue}{\frac{1}{4} T_{[α|δ|}^{\ \ \ \ \ \ \ σ} T_{β|τ|}^{\ \ \ \ \ \ δ} T_{γ]ρ}^{\ \ \ \ τ}}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} T_{[αβ}^{\ \ \ \ \ \ δ} R_{|δ|γ]ρ}^{\ \ \ \ \ \ \ \ \ \ σ}
{\bf + \frac{1}{4} T_{[αβ}^{\ \ \ \ \ \ \ δ} T_{|δ|γ]}^{\ \ \ \ \ \ \ \ τ} T_{τρ}^{\ \ \ \ \ σ}}
- \frac{1}{2} T_{[αβ}^{\ \ \ \ \ δ} ∇_{[|δ|} T_{γ]]ρ}^{\ \ \ \ \ \ σ}
- \frac{1}{4} T_{[αβ}^{\ \ \ \ \ δ} T_{[|δ||τ|}^{\ \ \ \ \ \ \ \ σ} T_{γ]]ρ}^{\ \ \ \ \ τ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} T_{[αγ}^{\ \ \ \ \ δ} R_{β]δρ}^{\ \ \ \ \ \ \ \ σ}
{\bf + \frac{1}{4} T_{[αγ}^{\ \ \ \ \ \ \ δ} T_{β]δ}^{\ \ \ \ \ \ τ} T_{τρ}^{\ \ \ \ \ σ}}
- \frac{1}{2} T_{[αγ}^{\ \ \ \ \ δ} ∇_{[β]} T_{δ]ρ}^{\ \ \ \ σ}
- \frac{1}{4} T_{[αγ}^{\ \ \ \ \ δ} T_{[β]|τ|}^{\ \ \ \ \ \ \ σ} T_{δ]ρ}^{\ \ \ τ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- \frac{1}{2} T_{[α|ρ|}^{\ \ \ \ \ \ \ δ} R_{βγ]δ}^{\ \ \ \ \ \ \ \ σ}
+ \frac{1}{4} T_{[α|ρ|}^{\ \ \ \ \ \ \ δ} T_{βγ]}^{\ \ \ \ τ} T_{τδ}^{\ \ \ σ}
- \color{green}{\frac{1}{2} T_{[α|ρ|}^{\ \ \ \ \ \ \ δ} ∇_β T_{γ]δ}^{\ \ \ \ \ σ}}
- \color{blue}{\frac{1}{4} T_{[α|ρ|}^{\ \ \ \ \ \ \ δ} T_{β|τ|}^{\ \ \ \ \ σ} T_{γ]δ}^{\ \ \ \ τ}}$
$\color{red}{∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}}
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
- ∇_{[α} (T_{βγ]}^{\ \ \ \ \ δ}Q_{δρ}^{\ \ \ \ σ})
+ 2∇_{[α}∇_β Q_{γ]ρ}^{\ \ \ \ \ σ}
+ 2∇_{[α}(Q_{β|δ|}^{\ \ \ \ \ \ σ}Q_{γ]ρ}^{\ \ \ \ \ \ δ})$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
- (∇_{[α} T_{βγ]}^{\ \ \ \ \ δ})Q_{δρ}^{\ \ \ \ σ}
- (∇_{[α} Q_{|δρ|}^{\ \ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ δ}
+ 2∇_{[α}∇_β Q_{γ]ρ}^{\ \ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+ 2(∇_{[α}Q_{β|δ|}^{\ \ \ \ \ \ σ})Q_{γ]ρ}^{\ \ \ \ \ \ δ}
- 2(∇_{[α}Q_{β|ρ|}^{\ \ \ \ \ \ \ δ})Q_{γ]ρ}^{\ \ \ \ \ \ σ}$
$ $
Again, substituting $\frac{1}{2} T_{αβ}^{\ \ \ \ γ}$ for $Q_{αβ}^{\ \ \ \ \ γ}\ $:
$\color{red}{∇_{[α} \tilde R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}}
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
- \frac{1}{2} (∇_{[α} T_{βγ]}^{\ \ \ \ δ})T_{δρ}^{\ \ \ σ}
- \frac{1}{2} (∇_{[α} T_{|δρ|}^{\ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ δ}
+ ∇_{[α}∇_β T_{γ]ρ}^{\ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+ \frac{1}{2} (∇_{[α}T_{β|δ|}^{\ \ \ \ \ σ})T_{γ]ρ}^{\ \ \ \ δ}
- \frac{1}{2} (∇_{[α}T_{β|ρ|}^{\ \ \ \ \ δ})T_{γ]δ}^{\ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= ∇_{[α} R_{βγ]ρ}^{\ \ \ \ \ \ \ \ σ}
-{\bf \frac{1}{2} (∇_{[α} T_{βγ]}^{\ \ \ \ \ \ δ})T_{δρ}^{\ \ \ \ \ σ}}
- \frac{1}{2} (∇_{[α} T_{|δρ|}^{\ \ \ \ \ σ})T_{βγ]}^{\ \ \ \ δ}
+ ∇_{[α}∇_β T_{γ]ρ}^{\ \ \ \ σ}
- ∇_{[α}∇_β T_{γ]ρ}^{\ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+ \frac{1}{2} T_{[αβ}^{\ \ \ \ \ τ} ∇_{|τ|} T_{γ]ρ}^{\ \ \ \ σ}
+ \frac{1}{2} R_{[αβ|δ|}^{\ \ \ \ \ \ \ \ \ \ \ σ} T_{γ]ρ}^{\ \ \ \ δ}
{\bf - \frac{1}{2} R_{[αβγ]}^{\ \ \ \ \ \ \ \ \ \ \ δ}T_{δρ}^{\ \ \ \ \ σ}}
- \frac{1}{2} R_{[αβ|ρ|}^{\ \ \ \ \ \ \ \ \ \ \ δ} T_{γ]δ}^{\ \ \ \ σ}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+ \color{green}{\frac{1}{2} (∇_{[α}T_{β|δ|}^{\ \ \ \ \ σ})T_{γ]ρ}^{\ \ \ \ δ}}
- \color{magenta}{\frac{1}{2} (∇_{[α}T_{β|ρ|}^{\ \ \ \ \ δ})T_{γ]δ}^{\ \ \ \ σ}}$
A reduced, slightly different set of terms with three $T$s cancel as above.
All others cancel the same, including those in bold, giving the desired result.