If I want to compute the integral of this function but from $[0,kπ]$
. Can I use parity of the function to integrate from $0$
to $π/2$
and then use Wallis formula?
Essentially, yes. Here's how. Assume $m$, $n$, and $K-1$ are non-negative integers, and define the integral $$I_{m,n}(K)=\int_0^{K\pi}\sin(x)^m\cos(x)^ndx.$$
We can split up the interval $[0,K\pi]$ into subintervals as
$$[0,K\pi]=\bigcup_{j=0}^{2K-1}\left[j\frac{\pi}{2},(j+1)\frac\pi2\right],$$
so that we can split up the integral
$$I_{m,n}(K)=\sum_{j=0}^{2K-1}\int_{j\pi/2}^{(j+1)\pi/2}\sin(x)^m\cos(x)^ndx.$$
Then we preform the substitution $t=x-j\pi/2$ in each integral. Then, using the sine and cosine addition formulae,
$$\sin(t+j\pi/2)=
\begin{cases}
(-1)^{j/2}\sin t, & \text{ even }j \\
(-1)^{(j-1)/2}\cos t, & \text{ odd }j ,\\
\end{cases}
$$
and
$$\cos(t+j\pi/2)=
\begin{cases}
(-1)^{j/2}\cos t, & \text{ even }j \\
(-1)^{(j+1)/2}\sin t, & \text{ odd }j ,\\
\end{cases}
$$
so that
$$\begin{align}
I_{m,n}(K)&=\sum_{j=0}^{2K-1}\int_0^{\pi/2}\sin(t+j\pi/2)^n\cos(t+j\pi/2)^mdt\\
&=\sum_{0\le 2r\le 2K-1}\int_0^{\pi/2}\sin(t+2r\pi/2)^n\cos(t+2r\pi/2)^mdt\\
&+\sum_{0\le 2r+1\le2K-1}\int_0^{\pi/2}\sin(t+(2r+1)\pi/2)^n\cos(t+(2r+1)\pi/2)^mdt\\
&=\sum_{0\le 2r\le 2K-1}\int_0^{\pi/2}((-1)^r\sin t)^n((-1)^r\cos t)^mdt\\
&+\sum_{0\le 2r+1\le2K-1}\int_0^{\pi/2}((-1)^r\cos t)^n((-1)^{r+1}\sin t)^mdt\\
&=\sum_{0\le 2r\le 2K-1}(-1)^{r(n+m)}\int_0^{\pi/2}\sin(t)^n\cos(t)^mdt\\
&+\sum_{0\le 2r+1\le2K-1}(-1)^{r(n+m)+m}\int_0^{\pi/2}\cos(t)^n\sin(t)^mdt.
\end{align}$$
Since
$$\int_0^{\pi/2}\sin(t)^n\cos(t)^mdt=\int_0^{\pi/2}\cos(t)^n\sin(t)^mdt$$
via symmetry, we have that
$$I_{m,n}(K)=\left[\sum_{0\le 2r\le 2K-1}(-1)^{r(n+m)}+\sum_{0\le 2r+1\le2K-1}(-1)^{r(n+m)+m}\right]\int_0^{\pi/2}\sin(t)^n\cos(t)^mdt.$$
This simplifies to
$$I_{m,n}(K)=\left[(1+(-1)^m)\sum_{r=0}^{K-1}(-1)^{r(m+n)}\right]\int_0^{\pi/2}\sin(t)^n\cos(t)^mdt.$$
You can use the Wallis formula at this point.
Also I've noticed that for $\cos^m(x)\sin^n(x)$
if one of $m$
or $n$
is odd then the integral on $[0,kπ]$
is $0$
, why is that?
This isn't always true actually. Take the case $n=7$, $m=4$, and $K=7$. We have that
$$\int_0^{7\pi}\sin(x)^7\cos(x)^4dx=32/1155.$$