2

Let $a,b,c\in \mathbb{Q}$. I need hint to show that $$a^3+25b^3+5c^3-15abc=0$$ only if $$a=b=c=0.$$

nonuser
  • 91,557
Ashot
  • 4,893

1 Answers1

6

Hint: First clear the denomiators and then use infinite decent! So, we can assume that $a,b,c$ are integer.

From $$a^3+25b^3+5c^3-15abc=0 \implies 5\mid a$$

So $a= 5a'$ and thus $$ 25a'^3+5b^3+c^3-15a'bc=0$$

so we get essentialy equation of the same form. But we can 't proceede this inifinite times unless $a=b=c=0$.

nonuser
  • 91,557