Evaluate the limit of:
$$\sum_{n=1}^{\infty}\frac{n^2}{n!}$$
Hints I am given:
1- The exponential series of type $\sum_{n=0}^{\infty}\frac{x^n}{n!}$ converge into $e^x$ for any $x\in R$
2- Any series of type $\sum_{n=0}^{\infty}\frac{P(n)}{n!}x^n$ , being $P(n)$ a polynomial of any level and $\forall x\in R$, it also converges.
3- $\sum_{n=1}^{\infty}a_{n-1}=\sum_{n=0}^{\infty}a_{n}$
What is the limit of this series?
According to the hints it is convergent, this is what I tried so far:
$\sum_{n=1}^{\infty}\frac{n^2}{n!}=\sum_{n=1}^{\infty}\frac{n^2}{n(n-1)!}=\sum_{n=1}^{\infty}\frac{n}{(n-1)!}$
Applying hint 3:
$\sum_{n=0}^{\infty}\frac{n+1}{n!}$
Split the series in 2:
$\sum_{n=0}^{\infty}\frac{n+1}{n!}=\sum_{n=0}^{\infty}\frac{n}{n!}+\sum_{n=0}^{\infty}\frac{1}{n!}$
Applying hint 1, with $x=1$ to the second part:
$\sum_{n=0}^{\infty}\frac{n+1}{n!}=e+\sum_{n=0}^{\infty}\frac{n}{n!}$
I dont know how to keep going, I know that the series $\sum_{n=0}^{\infty}\frac{n}{n!}$ converges into $e$ therefore the result of the whole series is 2 times $e$ but I dont understand why!