Consider the following topological space $(X, \tau)$ and let $\mathcal{C} \subseteq \tau$. Define \begin{align} \mathcal{B} &= \left\lbrace \cap_{i \in I} C_i \ \ | \ \ I \ \text{is a finite index set and} \ C_i \in \mathcal{C} \ \forall i \in I \right\rbrace \\ \tau^\prime &= \left\lbrace \cup_{j \in J} T_j \ \ | \ \ J \ \text{is an arbitrary index set and} \ T_j \in \mathcal{B} \ \forall j \in J \right\rbrace \\ \end{align}
I need to show that $\tau^\prime$ is a topology on $X$.
I know that in order to solve this question I need to show the following
- $\emptyset, X \in \tau^\prime$
- if $\{A_k\}_{k \in K} \subseteq \tau^\prime$ for some arbitrary $K$ then $\cup_{k \in K} A_k \in \tau^\prime$
- if $\{B_s\}_{s \in S} \subseteq \tau^\prime$ for some finite $S$ then $\cap_{s \in S} B_s \in \tau^\prime$
I have already proved the first bullet point. Anyone knows how I can prove the second and the third one? Thanks