I need to know the limit of this sequence:
$\lim (a^n +b^n)^{1/n}$ for $a,b>0$
I suppose that this limits will be in function of a and b, but how I can solve it?
I need to know the limit of this sequence:
$\lim (a^n +b^n)^{1/n}$ for $a,b>0$
I suppose that this limits will be in function of a and b, but how I can solve it?
Hint:
WLOG $a\ge b$
$a^n<a^n+b^n\le 2a^n$
Hint
If $b>a$:
$$\sqrt[n]{a^n+b^n}=b\sqrt[n]{\left(\frac ab\right)^n+1} \Rightarrow \lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}=b \lim_{n \rightarrow \infty}\sqrt[n]{\left(\frac ab\right)^n+1}$$ $$\Rightarrow \lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}= b\sqrt[n]{\left(\lim_{n \rightarrow \infty}\frac {a^n}{b^n}\right)+1}=b$$
If $a>b$:
$$\sqrt[n]{a^n+b^n}=a\sqrt[n]{\left(\frac ba\right)^n+1} \Rightarrow \lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}=a \lim_{n \rightarrow \infty}\sqrt[n]{\left(\frac ba\right)^n+1}$$ $$\Rightarrow \lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}= a\sqrt[n]{\left(\lim_{n \rightarrow \infty}\frac {b^n}{a^n}\right)+1}=a$$ If $a=b$: $$\lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}=a\lim_{n \rightarrow \infty}2^{1/n}=a2^0=a=b$$ In either case we can see that the maximum of $a,b$ happens to be the limit. Thus: $$\lim_{n \rightarrow \infty}\sqrt[n]{a^n+b^n}= \max(a,b)$$