Let $f$ be defined as:
$$ f(x) = \begin{cases} x & \text{ if } x\in\mathbb{Q}; \\\\ 0 & \text{ if }x\notin\mathbb{Q}. \end{cases} $$ Is $f$ Riemann integrable on $[0,1]$? Prove it.
We know that the upper sum $U = x$ and lower sum $L=0$.
Since $\lim U\neq \lim L$, $f(x)$ is not Riemann integrable.
Is this sufficient for the proof?