1

how we can show that the following equality holds

$E[(x-\mu)/\sigma]=0$

$E[(x-\mu)^2/\sigma^2-1]=0$

$E[(x-\mu)^3/\sigma^3]=0$

$E[(x-\mu)^4/\sigma^4-3]=0$

user45689
  • 25
  • 1
  • 6

1 Answers1

2

If $X\sim\mathcal{N}(\mu,\sigma^2)$ then $Z=\frac{X-\mu}{\sigma}\sim\mathcal{N}(0,1)$, and so you're asked to show $$ E[Z], \quad E[Z^2]-1,\quad E[Z^3],\quad E[Z^4]-3 $$ are all equal to $0$. This can be done by calculating the approriate integrals using the law of the unconscious statistician. You can compare your expressions with this list


We know that $Z$ has density $f_Z$ given by $$ f_Z(x)=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}z^2\right),\quad z\in\mathbb{R}, $$ and consequently $$ \begin{align} E[Z]&=\int_{-\infty}^\infty z\cdot f_Z(z)\,\mathrm dz=\frac{1}{2\pi}\int_{-\infty}^\infty z\cdot \exp\left(-\frac{1}{2}z^2\right)\,\mathrm dz. \end{align} $$ Now an anti-derivative of $z\cdot \exp\left(-\frac{1}{2}z^2\right)$ is the function $$ g(z):=-\exp\left(-\frac{1}{2}z^2\right),\quad z\in\mathbb{R}. $$ Thus $$ E[Z]=\frac{1}{2\pi}\left[\lim_{z\to\infty}g(z)-\lim_{z\to -\infty}g(z)\right]=\frac{1}{2\pi}\left[0-0\right]=0. $$

Stefan Hansen
  • 26,160
  • 7
  • 62
  • 95