I think I got my main problem solved perhaps. Two things that helped me:
- Group the terms as suggested in the hint by author
- Integrate w.r.t to $\textbf{v}$ first instead of $t$
here goes:
$$\begin{aligned}
\int t \, p(t)\; dt &\propto \int t \, \int \exp{\left(-\frac{\beta}{2}\left\{t-y_{MP}-\textbf{g}^T \textbf{v}\right\}^2-\frac{1}{2}\textbf{v}^T \textbf{A}\textbf{v}\right)}\; d\textbf{v}\; dt\\
&=\int t\int \exp\left(-\frac{\beta}{2}\{t^2-2ty_{MP}-2t\textbf{g}^T\textbf{v}+2y_{MP}\textbf{g}^T\textbf{v}+y_{MP}^2 + \textbf{v}^T\textbf{g}\textbf{g}^T\textbf{v}\}-\frac{1}{2}\textbf{v}^T\textbf{A}\textbf{v}\right)\;d\textbf{v}\;dt\\
&=\int t\int \exp\left(-\frac{\beta}{2}\{t-y_{MP}\}^2+\beta (t-y_{MP})\textbf{g}^T\textbf{v} -\frac{\beta}{2} \textbf{v}^T\textbf{g}\textbf{g}^T\textbf{v}-\frac{1}{2}\textbf{v}^T\textbf{A}\textbf{v}\right)\;d\textbf{v}\;dt\\
&=\int t\exp\left(-\frac{\beta}{2}\{t-y_{MP}\}^2\right)\int \exp\left(-\frac{1}{2}\textbf{v}^T\left(\textbf{A}+\beta\textbf{g}\textbf{g}^T\right)\textbf{v}+\beta (t-y_{MP})\textbf{g}^T\textbf{v}\right)\;d\textbf{v}\;dt\\
&=\int t\exp\left(-\frac{\beta}{2}\{t-y_{MP}\}^2\right) \left[(2\pi)^{W/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2} \exp\left(\frac{1}{2}\beta (t-y_{MP})\textbf{g}^T\left(\textbf{A}+\beta\textbf{g}\textbf{g}^T\right)^{-1}\beta (t-y_{MP})\textbf{g}\right)\right]\;dt.
\end{aligned}$$
I will next denote $\textbf{A}+\beta\textbf{g}\textbf{g}^T=\textbf{C}$ and $\textbf{g}^T \textbf{C}^{-1}\textbf{g} = D$ so I get:
$$\begin{aligned}
\int t \, p(t)\; dt &\propto \int t\exp\left(-\frac{\beta}{2}\{t-y_{MP}\}^2\right) \left[(2\pi)^{W/2}|\textbf{C}|^{-1/2} \exp\left(\frac{1}{2}\beta^2 \{t-y_{MP}\}^2 D\right)\right]\;dt\\
&= (2\pi)^{W/2}|\textbf{C}|^{-1/2} \int t\exp\left(-\frac{\beta}{2}\{t-y_{MP}\}^2\right) \exp\left((-D\beta)\left(-\frac{\beta}{2}\right) \{t-y_{MP})^2 \right)\;dt\\
&= (2\pi)^{W/2}|\textbf{C}|^{-1/2} \int t \exp\left((1-D\beta)\left(-\frac{\beta}{2}\right) \{t-y_{MP})^2 \right)\;dt\\
&= (2\pi)^{W/2}|\textbf{C}|^{-1/2} \int t \exp\left(-\frac{\lambda}{2} \{t-y_{MP})^2 \right)\;dt,
\end{aligned}$$
where $\lambda = \beta-D\beta^2$. Now it down to the last integral. I will use substitution twice. First I set $u=\exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)$, from which I get
$$\int du =-\lambda\int t \exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\;dt+\lambda y_{MP}\int \exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\;dt$$
or
$$\begin{aligned}
\int t \exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\;dt &= -\frac{1}{\lambda}\int du + y_{MP}\int \exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\;dt\\
&= -\frac{1}{\lambda}\left[\exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\right]^{\infty}_{-\infty} + y_{MP}\int \exp\left(-\frac{\lambda}{2}\{t-y_{MP}\}^2\right)\;dt\\
&= 0 + y_{MP}\int_{-\infty}^{\infty} \exp\left(-\frac{\lambda}{2}s^2\right)\;ds\\
&= y_{MP}\left(\frac{2\pi}{\lambda}\right)^{1/2}.
\end{aligned}$$
On the previous I used substitution $s=t-y_{MP}$. So now, if I have done everything correctly I have that the main integral is:
$$\begin{aligned} \int t \, p(t)\; dt &\propto
y_{MP}\left(\frac{2\pi}{\lambda}\right)^{1/2}(2\pi)^{W/2}|\textbf{C}|^{-1/2}\\
&= y_{MP}\left(\left(\frac{2\pi}{\beta-\beta^2\textbf{g}^T
\left(\textbf{A}+\beta\textbf{g}\textbf{g}^T\right)^{-1}\textbf{g}}\right)^{1/2}
(2\pi)^{W/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2}\right)
\end{aligned}.$$
This seems to be correct by looking at the results of the book. This isn't given explicitly, but in the book I use the author states that the corresponding variance (hinting I got something right) for $p(t)$ is:
$$\sigma_t^2 = \frac{1}{\beta-\beta^2\textbf{g}^T \left(\textbf{A}+\beta\textbf{g}\textbf{g}^T\right)^{-1}\textbf{g}}=\frac{1}{\lambda}.$$
As a follow up in the same problem, I needed to show that:
$$\sigma^2_t = \frac{1}{\lambda}=\frac1\beta+\textbf{g}^T\textbf{A}^{-1}\textbf{g},$$
which indeed is the case:
\begin{aligned}
\sigma^2_t &= \frac{1}{\beta-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}}\\
&= \frac{1}{\beta-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}}\times\frac{\textbf{g}^T(\textbf{I}+\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)\textbf{g}}{\textbf{g}^T(\textbf{I}+\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)\textbf{g}}\\
&= \frac{\textbf{g}^T\textbf{g}+\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T\textbf{g}}{\beta\textbf{g}^T\textbf{g}+\beta^2\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T\textbf{g}-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\textbf{g}-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T(\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)\textbf{g}}\\
&=\frac{1+\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}}{\beta+\beta^2\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}}\\
&=\frac{\frac1\beta+\textbf{g}^T\textbf{A}^{-1}\textbf{g}}{1+\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\beta\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}-\beta\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}},
\end{aligned}
so now we must have:
$$\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\beta\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}-\beta\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}=0$$
$$\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}-\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}=0$$
$$\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}=\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\beta\textbf{A}^{-1}\textbf{g}$$
Next, I will denote: $\textbf{C}=(\textbf{A}+\beta\textbf{g}\textbf{g}^T)$
$$\textbf{g}^T\textbf{A}^{-1}\textbf{g}-\textbf{g}^T\textbf{C}^{-1}\textbf{g}=\beta\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}$$
$$\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T(\textbf{g}\textbf{g}^T)^{-1}\textbf{C}-\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T(\textbf{g}\textbf{g}^T)^{-1}\textbf{C}=\beta\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T(\textbf{g}\textbf{g}^T)^{-1}\textbf{C}$$
$$\textbf{g}^T\textbf{A}^{-1}\textbf{C}-\textbf{g}^T=\beta\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}$$
$$\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}-\textbf{g}\textbf{g}^T=\beta\textbf{g}\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}$$
$$\textbf{C}(\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}-\textbf{C}(\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T=\beta\textbf{C}(\textbf{g}\textbf{g}^T)^{-1}\textbf{g}\textbf{g}^T\textbf{C}^{-1}\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}$$
$$\textbf{C}\textbf{A}^{-1}\textbf{C}-\textbf{C}=\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{C}$$
$$(\textbf{A}+\beta\textbf{g}\textbf{g}^T)\textbf{A}^{-1}(\textbf{A}+\beta\textbf{g}\textbf{g}^T)-(\textbf{A}+\beta\textbf{g}\textbf{g}^T)=\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}(\textbf{A}+\beta\textbf{g}\textbf{g}^T)$$
$$(\textbf{A}+\beta\textbf{g}\textbf{g}^T)(\textbf{I}+\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)-(\textbf{A}+\beta\textbf{g}\textbf{g}^T)=\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}(\textbf{A}+\beta\textbf{g}\textbf{g}^T)$$
$$(\textbf{A}+\beta\textbf{g}\textbf{g}^T)(\textbf{I}+\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)-(\textbf{A}+\beta\textbf{g}\textbf{g}^T)=\beta(\textbf{g}\textbf{g}^T+\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T)$$
$$(\textbf{A}+\beta\textbf{g}\textbf{g}^T)(\beta\textbf{A}^{-1}\textbf{g}\textbf{g}^T)=\beta(\textbf{g}\textbf{g}^T+\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T)$$
$$\beta(\textbf{g}\textbf{g}^T+\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T)=\beta(\textbf{g}\textbf{g}^T+\beta\textbf{g}\textbf{g}^T\textbf{A}^{-1}\textbf{g}\textbf{g}^T).$$
In other words,
$$\sigma^2_t = \frac{1}{\beta-\beta^2\textbf{g}^T(\textbf{A}+\beta\textbf{g}\textbf{g}^T)^{-1}\textbf{g}}=\frac1\beta+\textbf{g}^T\textbf{A}^{-1}\textbf{g}.$$
Another update:
I tried also to compute the integral :
$$ \int_{-\infty}^{\infty} \, \int_{\mathbb{R}^W} \exp{\left(-\frac{\beta}{2}\left\{t-y_{MP}-\textbf{g}^T \textbf{v}\right\}^2-\frac{1}{2}\textbf{v}^T \textbf{A}\textbf{v}\right)}\; d\textbf{v}\; dt,$$
first w.r.t $\textbf{v}$ and then w.r.t $t$ and then vice versa to check that both ways result in the same outcome. I was confused at start because I got:
$$\begin{aligned} I_{\textbf{v}, t}&=\int_{-\infty}^{\infty} \, \int_{\mathbb{R}^W} \exp{\left(-\frac{\beta}{2}\left\{t-y_{MP}-\textbf{g}^T \textbf{v}\right\}^2-\frac{1}{2}\textbf{v}^T \textbf{A}\textbf{v}\right)}\; d\textbf{v}\; dt\\
&= (2\pi)^{W/2}(2\pi\sigma^2_t)^{1/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2}
\end{aligned},$$
and:
$$\begin{aligned} I_{t, \textbf{v}}&=\int_{\mathbb{R}^W}\,\int_{-\infty}^{\infty} \exp{\left(-\frac{\beta}{2}\left\{t-y_{MP}-\textbf{g}^T \textbf{v}\right\}^2-\frac{1}{2}\textbf{v}^T \textbf{A}\textbf{v}\right)}\;dt\; d\textbf{v}\\
&= (2\pi)^{W/2}\left(\frac{2\pi}{\beta}\right)^{1/2}|\textbf{A}|^{-1/2}
\end{aligned}.$$
So now $I_{t, \textbf{v}}$ should equal $I_{\textbf{v}, t}$:
$$(2\pi)^{W/2}\left(\frac{2\pi}{\beta}\right)^{1/2}|\textbf{A}|^{-1/2}=(2\pi)^{W/2}(2\pi\sigma^2_t)^{1/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2}$$
$$\left(\frac{2\pi}{\beta}\right)^{1/2}|\textbf{A}|^{-1/2}=(2\pi\sigma^2_t)^{1/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2}$$
$$\left(\frac{2\pi}{\beta}\right)^{1/2}|\textbf{A}|^{-1/2}=\left[2\pi\left(\frac{1}{\beta}+\textbf{g}^T\textbf{A}^{-1}\textbf{g}\right)\right]^{1/2}|\textbf{A}+\beta\textbf{g}\textbf{g}^T|^{-1/2},$$
next I will square both sides:
$$\frac{2\pi}{\beta|\textbf{A}|}=\frac{2\pi\left(\frac{1}{\beta}+\textbf{g}^T\textbf{A}^{-1}\textbf{g}\right)}{|\textbf{A}+\beta\textbf{g}\textbf{g}^T|}$$
$$\frac{1}{|\textbf{A}|}=\frac{1+\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g}}{|\textbf{A}+\beta\textbf{g}\textbf{g}^T|}.$$
This is where I thought something had gone wrong until I found out about the matrix determinant lemma making:
$$|\textbf{A}+\beta\textbf{g}\textbf{g}^T|=(1+\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g})|\textbf{A}|,$$
that is:
$$\frac{1}{|\textbf{A}|}=\frac{1+\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g}}{(1+\beta\textbf{g}^T\textbf{A}^{-1}\textbf{g})|\textbf{A}|}$$
$$\frac{1}{|\textbf{A}|}=\frac{1}{|\textbf{A}|},$$
so indeed $I_{t, \textbf{v}}=I_{\textbf{v}, t}\;\;\;\blacksquare$