$$I = \int_0^1\dfrac{t \ln t}{\sqrt{1-t^2}}\mathrm{dt}$$
Attempt:
Let $t = \sin x$
$\implies dt = \cos x dx$
$\implies I = \displaystyle \int_0^{\pi/2} \dfrac{\sin x \ln (\sin x) \cos x dx}{\cos x}$
$\implies I = -\ln (\sin x) \cos x|_{0}^{\pi/2} + \displaystyle\int_0^{\pi/2}\dfrac{\cos^2 x}{\sin x} dx$
The second integral can be "evaluated" using $\cos^2 x = 1- \sin^2 x$. But unfortunately, there are finally two divergent integrals.
$\implies I = -\ln (\sin x) \cos x|_{0}^{\pi/2} + \displaystyle\int_0^{\pi/2}\csc x dx$ + $\displaystyle\int_0^{\pi/2}\sin x dx$
How do I handle this?