For the cubic equation $x^3-3x-1=0$, you can check it has three real roots by calculus knowledge. Let them be $x_1<x_2<x_3$. Now prove that $$x_3^2-x_2^2=x_3-x_1.$$ It is not difficult to check that: $$x_1=2\cos 140 ^{\circ},x_2=2\cos 100 ^{\circ},x_3=2\cos 20 ^{\circ}.$$ (Here use the formula: $\cos 3x=4\cos^3x-3\cos x.$ )
And then we can check: $$x_3^2-x_2^2=x_3-x_1.$$ I just want to know how to get: $x_1=2\cos 140 ^{\circ},x_2=2\cos 100 ^{\circ},x_3=2\cos 20 ^{\circ}.$ Is there some trick. Any help and hint will welcome.