The following function is given:
$$f:\mathbb{R}\rightarrow \mathbb{R}, \ x\rightarrow \begin{cases} x^2\cos{\left(\frac{1}{x}\right)} & \text{for } x \neq 0\\ 0& \text{for } x =0\end{cases}$$
- Show that $f$ is everywhere differentiable
- Calculate the derivative $f\,'$
- Show that $f^{'}$ is not continuous at point $x_{0}=0$
2. $f\,'(x)=2x\cos{\dfrac{1}{x}}+\sin{\dfrac{1}{x}}$